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INTRODUCTION

The difference in math level between high school and university is in how deep, abstract,
and rigorous it gets. In high school, math mainly focuses on calculations, using formu-
las, and solving problems within clear rules. Ideas like calculus and algebra are taught
with an emphasis on intuition and practical use. At the university level, math becomes
more abstract. Students need to work with formal definitions, theorems, and proofs.
The transition isn’t just about learning harder topics but also about changing how you
think—focusing more on logic, precision, and general ideas instead of just memorizing
steps.

This textbook gives a detailed and strict introduction to important ideas in calcu-
lus, mathematical analysis, and differential equations. It mixes theory with real-world
applications, giving students the tools they need to solve problems in math, physics,
engineering, and other fields. The chapters are organized to build step by step, helping
students move smoothly from basic ideas to harder topics.

It acts as a bridge between basic calculus and advanced math studies. The textbook
stresses clarity, rigor, and real-world usefulness. It’s made for students who want a full
understanding of calculus and its uses. By working through the material, readers will
develop the thinking skills needed to handle many kinds of math problems. Whether
you're focused on research, engineering, or modeling in science, this textbook lays the
groundwork for success.

I hope it sparks curiosity and helps you appreciate the beauty and power of math.

It is crucial to understand that mathematics presented in English can differ
slightly from how it is taught in other languages. For instance, certain con-

cepts do not have direct equivalents or are defined differently. As an example,



there is no standard notion of "adjacent sequences" in English—I personally
defined this term myself. Similarly, topics like "Limited Development," which
form an important and well-defined chapter in other languages, are not com-
monly found in English mathematical literature. Additionally, there are some
set symbols which are diffrent from a language to another, for example N de-
notes natural numbers without zero in english, but not in french, the natural
numbers with zero are called whole numbers. Some one needs to proceed
carefuly.

The content outlines key ideas in math, starting with a close look at the real number
system. It explains its structure, properties, and the axioms that define it. Topics include
algebraic and order axioms, the Archimedean property, the completeness axiom, and the
topology of the real line. These ideas set the stage for understanding limits, continuity,
and convergence.

Next, complex numbers are covered, including their algebraic properties, how they’re
represented in the complex plane, and their polar forms. This section connects real and
complex math, offering tools for problems involving waves, oscillations, and similar topics
in engineering and physics.

The study of sequences introduces important ideas like boundedness, convergence,
monotonicity, and Cauchy sequences. These concepts help explain how functions and
series behave and are key to proving results like the Cauchy Criterion and the Stolz-
Cesaro Theorem.

The material then moves to real functions, focusing on limits, continuity, and dif-
ferentiability. Important theorems about continuous and differentiable functions are ex-
plained, along with types of discontinuities and uniform continuity. Convex functions are
also discussed, showing their role in optimization and economics.

The section on elementary functions gives a thorough look at logarithmic, exponential,
trigonometric, and hyperbolic functions. These functions are studied from different an-
gles, showing how they connect and why they’re important for describing natural events.

The chapter on Taylor polynomials, little o and big O notation, and approximations
near a point explores how functions behave locally and asymptotically. This is crucial for
numerical methods and applied math.

Later sections cover integration, starting with indefinite integrals and moving to def-
inite integrals using the Riemann integral. Techniques like integration by parts, substi-
tution, and methods for rational, irrational, and trigonometric functions are explained
in detail. Key results like the Fundamental Theorems of Calculus and inequalities like
Hermite-Hadamard show the link between differentiation and integration.

Finally, the material touches on improper integrals, first-order differential equations,




and second-order linear differential equations with constant coefficients. These topics are
essential for solving real-world problems in physics, engineering, and economics, where

systems often follow differential laws.




CHAPTER

REAL NUMBER SYSTEM

1.1 Algebraic and Order axioms

The real number system consists of the real numbers, together with the two operations,
addition (denoted by 4 ) and multiplication (denoted by x ) and the less than relation
(denoted by < ). One also singles out two particular real numbers, zero or 0 and one or
1. If @ and b are real numbers, then so are a4+ b and a x b. We say that the real numbers

are closed under addition and multiplication. We usually write
ab for a x b.

For any two real numbers a and b, the statement a < b is either true or false. We will
soon see that one can define subtraction and division in terms of + and x; and <, >,
etc. can be defined from <. There are three categories of properties of the real number
system: the algebraic properties, the order properties and the completeness property. We
will discuss the completeness property in a later section of this chapter. Here we begin
with certain basic algebraic and order properties, usually called the algebraic and order
axioms, from which we can prove all the other algebraic and order properties of the real

numbers. For all real numbers a,b and ¢ :

1. (a4+0b)+c=a+ (b+ c) (associative axiom for addition)



2.a4+0=04+a=a (additive identity axiom)

3. there is a real number, denoted —a, such that a+ (—a) = (—a)+a =0 (additive

inverse axiom)
4. a+b=b+a (commutative axiom for addition)
5. (axb)xc=ax(bxc) (associative axiom for multiplication)

6. a x 1 =1xa=a, moreover 0 # 1 (multiplicative identity axiom)

7. if a # 0 then there is a real number, denoted a™!, such that axa™! =a ' xa =1

(multiplicative inverse axiom)
8. ax (b+c)=axb+axc (distributive axiom)
9. axb=0bxa (commutative axiom for multiplication)
10. exactly one of the following holds: @ < b, a =bor b <a (trichotomy axiom)
11. if a < b and b < ¢, then a < ¢ (transitivity axiom)
12. ifa<bthena+c<b+c¢ (addition and order axiom)

13. ifa<band 0 <c¢, thena x c<bxc (multiplication and order axiom)

1.1.1 Remarks

n

o For equality, denoted by the symbol "=", we mean "the same thing as", or equiv-

alently, "is the same real number as'. We take "=" to be a logical notion and do

not write axioms for it. 2 Instead, we use any property of '=" which follow from
its logical meaning. For example a = a; if a = b then b = a; if a = b and b = ¢
then a = ¢; if a = b and something is true of a then it’s also true of b (since a and

b denote the same real number!).
o When we write a # b, we just mean that a is different real number as b.

o The assertion 0 # 1 in axiom 6 may seem silly. But it doesn’t follow from the other

axioms, since all the other axioms hold for the set containing just the number 0 .

e Some of the axioms are redundant. For example, from axiom 4 and the property
a+ 0 = a it follows that 0 + a = a. Similar comments apply to axiom 3 ; and

because of axiom 6 to axioms 8 and 9.

10



1.1.2 Algebraic Structures

o Axioms 1,2, 3,4 allow R the structure of an additive Abelian group.
o Axioms 5,6, 7 allow R the structure of a multiplicative group.
o Axioms 1,...,8 allow us to justify that R is a field.

o Commutativity of the multiplication operation x makes R a commutative field.

From axiom 8, we can write
alb+(=b)=0=ab+a(-b),
which means
~ (ab) = a(-b)
same as above we obtain

— (ab) = (—a)b.

1.1.3 Algebraic consequences

Certain not so obvious "rules", such as "the product of minus times minus is plus" and
the rule for adding two fractions, follow from the axioms. If we want the properties given
by axioms 1-9 to be true for the real numbers (and we do), then there is no choice other
than to have (—a)(—b) = ab and (a/c)+ (b/d) = (ad+bc)/cd (see the following theorem).
We won’t emphasise the idea of making deductions from the axioms. Nonetheless, you
should have some appreciation of the ideas involved, and thus you should work through

a couple of proofs.
Theorem 1.1. Ifa,b,c,d are real numbers and ¢ # 0,d # 0 then

1. ac = bc implies a = b.

2. a0 =0

3. —(—a)=a

4o (cH P =e¢
5. (~a=—a

11



9. (a/c)(b/d) = (ab)/(cd)

10. (a/c) + (b/d) = (ad + bc)/cd

1.2 R is a totally ordered field

Order consequences

All the standard properties of inequalities for the real numbers follow from axioms 1-13.

More definitions:

One defines " > ", " <7 and " > ” in terms of < as

a>bif b<a,
a<bif (a<bora=0»b),

a>bif (a>bora=0»).

(Note that the statement 1 < 2 although it isn’t one we are likely to make, is indeed
true. Why?)

We define v/b, for b > 0, to be the number ¢ > 0 such that ¢ = b. Similarly, if n is a
natural number, then /b is the number ¢ > 0 such that ¢* = b. To prove such a number
c always exists requires the "completeness axiom" (see later). To prove the uniqueness of
such a number requires the "order axioms'. If 0 < a, we say a is positive and if a < 0,

we say a 1s negative.

Some properties of inequalities:

The following are consequences of the axioms which are provided without proofs.
Theorem 1.2. Ifa,b and c are real numbers then

1. a < b and c <0 implies ac > bc

2.0<1land -1<0

3. a > 0 implies 1/a > 0

4. 0<a<bimplies0<1/b<1/a

12



1.2.1 Order relation

We defined in R an order relation < by a < b or b > a. We recall the axioms:
(A1) :Va € R:a < a (Reflexive) .

(Az) :a < b and a < b <= a = b(Antisymmetric) .
(A3) :a < band b < c= a < c(transitive) .

We can show that all elements of R are comparable with respect to the order relation

< and as such we imply a totally ordered set (total order relation)

1.2.2 Example

One can show the utility of such order relation
1. Let a be a real number such that |a| < &,Ve > 0, we have a = 0 (elsewhere, if we
|al

choose € = o contradiction.

2. Let a and b be two real numbers such that a < b+ ¢,Ve > 0, then a < b (else, if we

b—a
take ¢ = — o we get a contradiction).

1.3 Natural Numbers and Induction

Definition 1.1. Mathematical induction is a mathematical proof technique requiring es-
sentially that a statement P(n) holds for every natural number n = 0,1,2,3, ...; that is,

the overall statement is a sequence of infinitely many cases

P(0), P(1), P(2), P(3),....

A proof by induction consists of two steps: first step, the base, proves the statement
for n = 0 without assuming any knowledge of other cases. Second step, the induction,
proves that if a statement holds for any given case n = k , then it must also hold for the
next case n = k+ 1. These two steps establish that the statement holds for every natural
number n. The base case doesn’t necessarily begin with n = 0 , but often with n =1
and possibly with any fixed natural number n = N, establishing the truth of statement
for all natural numbers n > N.

Example 1.1. Prove the following statements:
a- 1+34+5+...+(2n—1) =n?
b- 12422 4 3% ... 4 n? = notlGntl)
2
- P42 434 pnd = (M)

13



Example 1.2. Prove that for all numbers xdifferent from 1: (1+z)(1+2?)(1+2*)...(1+

1—z?n+1

’n) = "

1.4 Absolute value

The absolute value (or modulus) for any real number a, denoted by |a|, is defined as

aﬁmewz{ “az0

. )
—a, sia <0

la] = sup (a, —a).

The absolute value has the following fundamental properties:
(1) Ja|=0<=a=0.

(2) lal =|-al.
(3) la.b] = lal . [b].
(4) sita>0:|z|<a<= —a<z<a

Indeed, if x > 0 we have x > —a and
|z] < a <=z < a.

if £ <0 we have x < a and
|z] < a <= —x < a soit x > —a.

(5) la+0| < la| +[b].

Indeed, if @ and b have the same sign, then the inequality is true. If a < 0 < b, then
a+b < b < b+]a| (because a < 0 < |al), |a] = —a.ie. a+b < |a|+|b].alsob >0 > — |b],
a+b>a>a—|bl. which means that a +b > — |a| — |b], and using (4), we get

la+b] < |a| + [b].
We can show, by induction that

lay + ag + ... + a,| < |ar] + |as] + ... + |an] .

14



(6) lal = ol| < la—0.

la| = [b+ (a — b)| and |b| = |a + (b — a)|, then, by (5), we obtain
ja| <16 + |a — ]

|b] < laf +[b = a
—la—bl <laf —[b] < la—bl,

by (4), we claim

lla| — ]} < |a —0].

1.5 Intervals

In mathematics, a (real) interval is a set that contains all real numbers lying between

any two numbers. more precisely

Definition 1.2. Let a and b bet two real numbers such thatb > a. The set {x : a < x < b}
is called open interval and it noted by |a,b[. The set [a,b] = {x : a < x < b} is called closed
interval (compact interval). The sets [a,b] = {z :a <z <b},]a,b] ={z:a <x < b}, are
called (respectively right and left) half-open intervals.

For all intervals, the points a and b are called endpoints. If a = b, we put by definition
la,a] = {a} (degenerate closed interval) and ]a, a| = ¢. The length of the interval ( closed,
open, or half-open) is given by the real number b — a.

Examples: 1- The set {z : z < a} is a left unbounded closed interval, noted |—o0,al .
2- The set {z : z < a} is a left unbounded open interval, noted |—oo,a[.  3- The set
{z : z > a} is a right unbounded closed interval, noted [a,+o00[. 4- The set {z : = > a}
is a right unbounded open interval, noted Ja, +o0o[.  5- The set R is also noted | —oo, +00[ .

—oo and 400 represent infinity numbers.

1.6 Archimedean property

This property does not follow from the algebraic and order axioms alone. It states,

informally, that there are no real numbers beyond all the natural numbers.

15



1.6.1 Archimedean axiom

For every real number a there is a natural number n such that a < n. Equivalently, the

set N is not bounded above. We say that R is Archimidean.

Corollary 1.1. For all real numbers a and b such that a > 0, there exists n € N such

that na > b.
Proof. Just replace in the axiom a by g. O]

Remark 1.1. This property seems trivial, actually it’s very important, and it allows us

to define the famous definition of the integer part of a real number.

Proposition 1.1. Let x € R, there exists a unique integer ( called integer part) denoted
by E(x), or [z], such that:

E(z) <z < E(r)+ 1L

Example 1.3. E(e) =2, E(—e) = —3, E(1,45632) = 1.

1.7 The completeness Axiom

In this section we give the completeness Axiom for R. This Axiom will guarantee that R

has no "gaps".

Definition 1.3. Let S be a nonempty subset of R.

a. If S contains the largest element sy [that is, so belongs to S and s < sg for all s € S,

then we call sg the mazimum of S and write sy = max.S.

b. If S contains the smallest element then we call the smallest element the minimum of S

and write min S.

Example 1.4. The set R has no maximum and minimum.

Example 1.5. The interval |a,b| has no maximum nor minimum.

Example 1.6. N={0,1,...}, minN =0, N has no mazimum.

16



Example 1.7. min [a, b] = a, max [a, b] does not ezist.

Example 1.8. Let A be a subset of C R, defined by A = {xr € R:0<Inz <1} Check

the min and the max for A. Indeed, one has 0 < Inx < 1, which is equivalent to
I1<r<e.

So A=1,e[, we get, min A = 1 and max A does not exist.

Definition 1.4. Let S be a nonempty subset of R.

a. If a real number M satisfies s < M for all s € S, then M 1is called an upper bound of
S and the set S is said to be bounded above.

b. If a real number m satisfies m < s for all s € S, then m is called a lower bound of S
and the set S is said to be bounded below.

c. The set S is said to be bounded if it is bounded above and bellow. Thus S is bounded if

there exist real numbers m and M such that S € [m, M].

Example 1.9. The set A = {sinn, n € N} is bounded, because
VneN:—1<sinn < 1.
Example 1.10. The set A = [1, 3] is bounded, we can easily check that

VeecA:1<x<3.

Example 1.11. Let A = {#17 n> 1} . A given real M >

and a given real m < 0 is a lower bound for A.

% is an upper bound for A,

Definition 1.5. Let S be a nonempty subset of R

a. If S is bounded above and S has a least upper bound, then we will call it the supremum

of S and denote it by sup S.

17



b. If S is bounded below and S has a greatest lower bound, then we will call it the infimum

of S and denote it by inf S.

Example 1.12. Let A =|1,2[, we have
Vee A:1<x <2,

hence inf A =1, sup A = 2.
Example 1.13. For the set A = {”T’l, n > 1}, one has inf A =0, sup A = 1 because

-1
vn>1:0<"

< L
n

1
Example 1.14. Let A = {,n = 1,2,3,4}, we have inf A = min A = 7 and max A =
n

sup A = 1.

1
4

Theorem 1.3. Fvery nonempty subset S of R that is bounded above has a least upper

bound. In other words, sup S exists and is a real number.

Corollary 1.2. Fvery nonempty subset S of R that is bounded below has a greatest lower
bound inf S.

Exercise 1.1. Let A and B be nonempty subsets of real numbers such that A C B, prove
that

1. If B is upper bounded, the sup B exists and sup A < sup B.

2. If B is lower bounded, the inf B exists and inf B < inf A.

Exercise 1.2. Let A and B be nonempty subsets of real numbers, show that

1. sup(AU B) = max {sup A,sup B} .

2. inf(AU B) = min {inf A, inf B} .

3. If AN B #= 0, show that sup(A N B) < min{sup A,sup B} and inf(AN B) >
max {inf A, inf B}.

18



1.8 Characterization of supremum and infimum
Theorem 1.4. Let X be a subset of R. The real M 1is the supremum for X, if and only
if the following hold :

a. Ve € X, x satisfies v < M.

b. Ve > 0,3 x. € X, satisfying M —e < x. < M.

Remark 1.2. (a) means that M is an upper bound for X. (b) indicates that M — ¢ is
not an upper bound for all € > 0.

1
Example 1.15. Let be A = {1 ——n= 1} . Prove that sup A = 1. Using the upper
n

1 1

bound characterization, one can see that 1)V =1—— € A:x=1——< 1. 2) We
n n

claim that : Ve >0, dv. € A 2. > 1—¢

1
. > l—esl——>1-—¢
n
1
=< —<e¢£
n

1
= n>-—.
€

So, let € >0 and n € N such that n > % (n exists because R is Archimedean set, then

1
rz.=1——>1—¢.
n

Thus Ve > 0, dx. € X : x. > 1 — ¢ which means sup A = 1.

Theorem 1.5. Let X be a subset of R. The real m is the infimum for X, if and only if
the following hold :

a. Vx € X, x satisfies x > m.

b. Ve > 0,3 x. € X, satisfying r. < m+¢.

—N

1
Example 1.16. Let be A= {1+ —,n > 1} . Prove that inf A = 1.
n

We have 1) Vx € A: x =1+— > 1. 2) We prove thatVe >0, Jz. € A:m < z. < 1+e.,

S|
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indeed
1
. < l4+eesl+-—<1l+¢
n
1
= —<e&
n
1

<~ n> g
So, let be ¢ > 0 and n € N such that n > i Then . < 1+ ¢. Thus inf A = 1.
Theorem 1.6. Let A, B be two nonempty subsets of R. Define
A+B:={z+y:x€ A and y € B},
and
A—-B:={r—y:z €A and y € B}.
we have
sup(A+ B) =supA+supB and sup(A— B)=supA —inf B.

Establish similar formulas for inf(A + B) and inf(A — B).

1.9 Extended real number line

Definition 1.6. The extended real number line is obtained from the real number line R by
adding two infinity elements +00 and —oo endowed by the totally order relation extended

from that of R to R = RU {—o00, +oc}, where R denotes the extended real number line.

Operations on R = RU {—o00, +00} are defined by

T+ (+00) = +oo+ 2z =+0o0,Vz € R,

r+(—00) = —oo+a=-—00,VreR,
toosixz >0

x (+o0) = (£oo) x = oSt :
Foosixz <0
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(+00) + (+o0) = oo,
(=00) + (-o0) = —o0,
(£00) (£o0) = +o0,
(d00) (Fo0) = —oo.

As the sum (+00) + (—o0) and the product 0 (4o00) = 400 are not well defined, so R

does not have any algebraic structures.

1.10 Topology of the line R

1.10.1 Open sets, closed sets, neighbourhood

Definition 1.7. A subset A of R is said to be open if it is empty or if for every x € A

there exists an open interval containing x and contained in A.

In other words an open set in R is a set which is the union of open intervals. The

following assertions are an almost immediate consequence of this definition.

O; Every union (finite or infinite) of open sets is open;
O, Every finite intersection of open sets is open;

O3 The line R and the empty set () are open sets.

Property O; results from the fact that every union of sets, each of which is a union of
open intervals , is itself a union of open intervals. To prove the property O, it is sufficient

to prove it for the intersection of two open sets A, B : By hypothesis
A=UA;,B=U,B;

where A; and B; are open intervals. Therefore
ANB = (YA)N(U;B;) =U, (A, N Bj).

Since each of the sets A; N B; is either empty or an open interval, AN B is open.
Finally, property O3 is obvious.
Example 1.17. Every open interval is an open set.

Example 1.18. The union of the open interval |n,n + 1[ where n € Z, is an open set.

The intersection of infinite number of open sets is not always open. For example
Mpen+ q _717 % D = {O} :

21



Definition 1.8. A subset A of R is said to be closed when its complement C& is open.
Each of the properties O; Oy ,03 at one implies a dual property for closed sets.

Example 1.19. Every closed interval [a,b] (where a < b) is a closed set. Indeed, the
complement of [a,b] is the union of the two open intervals |—oo, a| and b, +oo[, and is

therefore an open set.

It should be observed that a set can be neither open nor closed.
Neighbourhood (or neighborhood): Let x € R and € > 0. A neighbourhood of z is

a subset of R which contains an open interval V{, ) = ] — ¢, 2 + €], containing z.

Example 1.20. The interval]—¢, [ (¢ > 0) is a neighbourhood of 0. The interval |—=+, £

(n > 0) is a neighbourhood of 0.

Properties
1) The intersection of finite neighbourhoods of a point z is also its neighbourhood
2) If x and y are two distinct real numbers of R, there exist two neighbourhoods V' of
and W of y such that VN W = 0. ( R is a separated space (or Hausdorff).

Proposition 1.2. A subset S is open if and only if S a neighbourhood of all the points
of S.

Example 1.21. Ifa,b € R (a <b), the intervals |a,b[,]—00,al,|a, +oo| are neighbour-
hoods for all their points.

Remark 1.3. R s both open and closed subset, elsewhere [a,b] (a < b) is neither open

nor closed.

The meaning which we have just given to the word "neighbourhood" appears different
from the one defined in ordinary usage, since for us a point  of R has many neighbour-
hoods, and one of them is the space R itself.

Accumulation points of a set

Definition 1.9. If A is a subset of R, a point x of R is called an accumulation point of
A if, in every neighbourhood of x, there exists at least one point of A different from x.

In other words, if A is a subset of R, a point x of R is called an accumulation point of A
if, Ve >0, ANz —e,x +¢[/{z} #0.

The set of accumulation points is denoted by A’ ( it can be empty).
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Example 1.22. A =[1,2], then A" =[1,2].

Example 1.23. A =]0,1[U{2}, so A’ =0, 1].

Example 1.24. A = {1,2,3,4}, therefore A’ = ¢.

Example 1.25. A= {1 n>1}, thus A" = {0}.

Remark 1.4. An accumulation point of a set does not necessarily belong to the set. For
example, the point 0 is an accumulation point of the set of point A = {%, n > 1} , but does
not belong to this set. Again 0 and 1 are accumulation points of |0, 1[ without belonging

to this interval.

Proposition 1.3. Every closed set contains its accumulation points. Conversely, every

set which contains its accumulation points is closed.

Proof. Let A be a closed set; if z € Cg, then the open set C§ is a neighbourhood of  and
does not contain any point of A nor does it contain any point of A. Thus x cannot be an
accumulation point of A. Conversely, if A is such that no point of C4 are an accumulation
point of A, then there exists for each x € C4 a neighbourhood of x not containing any
point of A, and therefore contained in C4'; the set C4 is thus a neighbourhood of each of

its points, i.e., it is open; in other words, A is closed. O
Isolated points

Definition 1.10. An isolated point of a set A is a point x of A which is not an accumu-
lation point of A. In other words, it is a point x of A which has a neighbourhood V' such
that ANV =z. (3e >0, ANz —e,x+e[ = {z}.

Example 1.26. Let A = [0,1] UN, then the isolated points of A are {2,3,...,n,...}.
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CHAPTER

COMPLEX NUMBERS

2.1 Algebraic properties

Let (z,y) and (2/,y') be two elements of R%. We define two operations on R? by set-
ting (z,y) x (',y) = (z2' —yy/, 2/ +ya') et (x,y) + (2',y) = (x + 2,y +¢'). This
two composition operations define a new field, which is the complex commutative field
denoted by C. The additive neutral element is given by 0 = (0,0) and the multiplicative
neutral element is (1,0), the multiplicative inverse of (z,y) # (0,0) is (a?nyg, mQyTyz) . By
identifying (x,0) € R? with z € R, and by setting ¢ = (0,1).

(C:{z/z:x+iywithx,y€Randi2:—1}.

So we do calculus with complex numbers as what we do with real numbers taking into

account that 2 = —1.

Example 2.1. For alln € N, we have

1 if n =4k

.9 o L=t 141 ifn=4k+1
I+i+i+ .+ = — =

1—q i ifn=4k +2

0 ifn=4k+3
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Definition 2.1. A complex number is any number of the form z = a + ib where a and b
are real numbers and i is the imaginary unit. The notations a + b and a + bi are used
interchangeably. The real number a in z = a + b is called the real part of z = a + ib; the
real number b is called the imaginary part of z = a+1ib. The real and imaginary parts of

a complex number z = a + ib are abbreviated Re (z), and I'm (z), respectively.

Definition 2.2. Complex numbers z; = ay + iby and z5 = as + iby are equal, z1 = 2o, if

a1 = a9 and b1 = bg.
Conjugate and modulus of a complex number

Definition 2.3. Let z = x+1y be a complex number, we define the conjugate of Z = x+1y
by Z = x — iy. The positive number |z| = /2Z = /2% + y? denotes ils modulus.

The modulus |z| of a complex number z is also called the absolute value of z. We shall

use both words modulus and absolute value throughout this text.

Example 2.2. If z = 2 — 3i, then we find the modulus of the number to be |z| =

22+ (=3)2 = V13. If 2 = —9i, then |z| = |-9i| = /(- 9)? = 9.

The following properties hold

Zl:tZQ—le:ZQ,

1)

2) 712 = 7173,

3) i _ A

22

4)| | 0and |z| =0« 2 =0,

5) |2122| = [21] |22

6) |[z1] = [22]| < |21 — 22| <[] + |22
7) |Rez\ 12|, [Imz] < |z|.

8)

2.2 Complex plane

A complex number z = x + iy is uniquely determined by an ordered pair of real numbers
(x,y). The first and second entries of the ordered pairs correspond, in turn, with the
real and imaginary parts of the complex number. For example, the ordered pair (2, —3)
corresponds to the complex number z = 2 — 3i. Conversely, 2 = 2 — 3i determines the
ordered pair (2,—3). The numbers 7,7, and —5i are equivalent to (7,0), (0,1), (0, —5),

respectively. In this manner we are able to associate a complex number z = x 4 1y with
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a point (x,y) in a coordinate plane.

Complex plane

Because of the correspondence between a complex number z = = + 7y and one and only
one point (z,y) in a coordinate plane, we shall use the terms complex number and point
interchangeably. The coordinate plane is called the complex plane or simply the z -plane.
The horizontal or x —axis is called the real axis because each point on that axis represents
a real number. The vertical or y — axis is called the imaginary axis because a point on
that axis represents a pure imaginary number.

Vector

A complex number z = x + 7y can also be viewed as a two dimensional position vector,
that is, a vector whose initial point is the origin and whose terminal point is the point
(x,y). This vector interpretation prompts us to define the length of the vector z as the
distance |z| = v/2Z = V22 + y2 from the origin to the point (x,y) . This length is the

modulus.

2.3 Polar Form of Complex Numbers

Recall that a point P in the plane whose rectangular coordinates are (z,y) can also be
described in terms of polar coordinates. The polar coordinate system, invented by Isaac
Newton, consists of point O called the pole and the horizontal half-line emanating from
the pole called the polar axis. If r is a directed distance from the pole to P and 6 is an
angle of inclination (in radians) measured from the polar axis to the line OP, then the
point can be described by the ordered pair (r, ), called the polar coordinates of P.
Polar form

Suppose, that a polar coordinate system is superimposed on the complex plane with the
polar axis coinciding with the positive x-axis and the pole O at the origin. Then z,y,r
and 6 are related by x = rcosfl,y = rsinfl. These equations enable us to express a nonzero
complex number z = z+iy as z = (rcosf)+i(rsinf). We say that z = r(cosf+isind) is the
polar form or polar representation of the complex number z. Again, the coordinate r can
be interpreted as the distance from the origin to the point (z,y) . In other words, we shall
adopt the convention that r is never negative so that we can take r to be the modulus of z,
that is, 7 = |z|. The angle 6 of inclination of the vector z, which will always be measured
in radians from the positive real axis, is positive when measured counterclockwise and
negative when measured clockwise. The angle 6 is called an argument of z and is denoted
by 0 = arg(z). An argument 6 of a complex number must satisfy the equations cos) = £
and sinf = . An argument of a complex number z is not unique since cosf and sin

sinf are 2w — periodic . In practice we use tanfl = £ to find 6. However, because tant
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is m — pertodic, some care must be exercised in using the last equation. The following

example illustrates how this is done.

Example 2.3. Express —/3 — i in polar form.

Solution

With © = —1 3 and y = —1 we obtain r = |z| = 2. Now ¥ = __—\}3 = %, and so

a (tcm%) = 7/6, which is an angle whose terminal side is in the first quadrant.

But since the point (—/3,—1) lies in the third quadrant, we take the solution of tan%
e

to be 0 = arg(z) = § +7 = . It follows that a polar form of the number is z =

Tn | i
2(cos ' +isinY).

Principal Argument
The symbol arg(z) actually represents a set of values, but the argument 6 of a complex
number that lies in the interval —m < 6 < 7 is called the principal value of arg(z) or
the principal argument of z. The principal argument of z is unique and is represented
by the symbol Arg(z), that is, —7m < Arg(z) < w. For example, if z = i, we have some
m 5t —3m

values of arg(i) as 7, %, =™, and so on, but Arg(i) = 7. Similarly, we can verify that

the principal argument of —/3 — i is Arg(z) = T = _TE’”. Using Arg(z) we can ex-
press the complex number —+/3—i in the alternative polar form z = 2 (COS_TE”T + isin‘%’r).
Moivre’s formula

If z # 0 we have z = r (cos 0 4 i sin f) where @ is the principal argument. By definition,
—7m < Arg(z) < m. The polar form of a complex number is especially convenient when

multiplying or dividing two complex numbers. We can verify that
2129 = 117132 (cos (01 + 02) + isin (6 + 65)) .

Thus |z120| = |21] |22| and arg (z122) = (arg (z1) + arg (z2)) mod2m,

and

2= D (cos (0, — 0o) + isin (61 — 63)).

Z9 T

continuing in this manner, we obtain a formula for the-nth power of z.
(rcos@ +irsin®)" = r" (cos (nf) + isin (nfd)).

Euler’s formula

Let 2 # 0, and z =7 (cosp + isinyp), if r = 1, then 2z = cos ¢ + isin . Put

e = cosf +isind
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which is called Euler’s formula.

: ) . o
Example 2.4. 2™ =1, ™ = —1, e 2" = —4, e2' = .

0

Replacing 0 by (—0) in € = cosf + isinf, we obtain

e = cosf —isinf

From the last two formulas above, we deduce Euler’s formulas:

il 4 emif ol _ o—if
cosp = ——p0—, sinf =

Properties

1) ol =i _ i(6+0)

ol A
2 _ — 1(0—0")
3) ()" =em neN.

Definition 2.4. Let 2 # 0. Then z = r(cos@ +isin @) = re? is called the exponential
form of z.

The nth root of a complex number

All nonzero complex number z = re admits n roots n—iémes w; where, wy, = {/re’ =

with £ € {0,1,...n— 1}, n > 1.

Example 2.5. Solve the following equation z* = 1 + 1.
The solutions are the fourth roots of 141, so we have wy, = f/iei(%“”k), k=0,1,2,3.
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CHAPTER

SEQUENCES OF REAL NUMBERS

3.0.1 General definitions

Definition 3.1. A real sequence or a sequence of real numbers is defined as a function
from N, the set of natural number to R, the set of real numbers. In other words N :
ne€Nr—u, € R u, = f(n). It is customary to denote a sequence by a letter such as

u and to denote its value at n as (uy)nen or more clearly (uy,), w, = (ug, uy, ...).

The real numbers ug, uq, ... are called elements or terms of the sequence u,,. The number

uy, is called the nth term of rank n of the sequence or general term.

Examples:

(i) (b25)
n+1 neN_ 1273777

1
= (25:25.)

Definition 3.2. Let {uy}, .y
- constant if there exists a € R such that: Yn € N : u,, = a.

~~
[\
=
i
=
3
SN—
I
N | —

be a real sequence, it is said to be :

- stationary if there exists ng € N such that Vn = ng : u, = Uy,.
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- truncated, if its general term can only be defined after a certain value of n, let n > Nj.

If, necessary we can complete by putting u,, = 0 pour n < Nj.

1
Example 3.1. (sin <2n + 2) 7T) = (1,1,1,...) is a constant sequence.

<sz’nn!g> = <sing,sin%,sin 2%,sin (6%) ,sin (24%) ,0,0, ) 1S a stationary se-
neN
quence.

1
<) is a truncated sequence, it is defined after n = 4.
n(n—3)

3.0.2 Bounded sequences, convergent sequences

Definition 3.3. A sequence (u,,) is said to be upper bounded ( resp. lower bonded), if
there exists M € R such that ¥Yn € N:u, < M (resp. u, > M ).
A sequence is said to be bounded if it is upper and lower bounded.

in other terms (u,) is said to be bounded if there exists M > 0, M € R, such that
Vn e N: |u,| < M.

< L

S|

1
Example 3.2. The sequence () is bounded, because, Vn >1:0 < u, =

neN
The sequence ((—1)"),cy s bounded because Vn € N : |(=1)"| = 1.

The sequence (n), .y is lower bounded, but the sequence ((—1)"n) is neither upper

bounded nor lower bounded.

Definition 3.4. We say that the sequence (u,) converges to the limit | as n approaches

infinity, and write lim w, =1 or u, — [, n — +o0, if
n— 0o

Ve > 0,3dNyg = Ny (¢) € N,Vn > Ny (€) = |u, — 1] < e. (3.1)

A sequence that does not converge to some real number is said to diverge.

Resume

lim u, =1< Ve >0,3INy(e) € N,Vn > Ny () = |u, — | < e.

n—-+4o0o

Theorem 3.1. The limit of a convergent sequence is unique.
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Proof. By contradiction technique, we suppose that we have two limits [y, [y, we must

show that [; =[5, indeed by the definition of limit there must exist N; so that

Vi > Ny (€) = |un — ] < g

and must exist Ny so that
€
Vn > Ny (€) = |u, — lo] < 5

For n > max { Ny, N2}, the triangle shows that

g 9
|ll—lz|:|l1—l2—l—un—un|<]un—ll|—|—|un—l2|<§+§<5

This shows that |l; — [3| < € for all positive €. It follows that |l; — l3| = 0. O

Example 3.3. The following sequence ((—1)"),cy = (1,—1,1,—1,...) does not converge

to any real number.

3.0.3 Convergent sequences properties
Theorem 3.2. Convergent sequences are bounded.
Proof. Let (u,) be a convergent sequence, and let 1_131 u,, = [. Applying Definition 3.4
with e = 1, we obtain NV € N so that
Vn > N (e) = |u, — | <1,
From the triangle inequality we see that N € N implies
Vn > N = |u,| <1+,
define M = max {1+ |l|, |u1], |uz|, |us|, ..., |un|}. Then we have |u,| < M, for all n € N
, 80 (uy,) is a bounded sequence. O

Remark 3.1. The boundness of a sequence of real numbers is necessary for convergence

but not sufficient.
Example 3.4. La suite ((—1)"n), .y = (1,—1,1,—1,...) is unbounded, so divergent.

Theorem 3.3. If lim u, =a, lim v, =b, and u, < v,, (Vn € N). Then a < b.

n—400 n—-+o0o

Theorem 3.4. Let be {un}, o {Vn}nen s
b), despite that (Vn € N) (u,, < v,), we obtain a < b.

two sequences which converge to a and (resp.
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1 1
Example 3.5. Let be the following sequences ( ) , and < ) ,, we have
n+1/,cy n+2/,cn

1

Vn e N <
" n+2 n+1

, but the two limits are equal to 0.

Theorem 3.5. (Squeeze Theorem) Suppose that {un}, o s {Vn}pen, and {wn}, oy, are

sequences of real numbers such that 1)¥n € N : u, < w, < v,. 2) lirf Uy = 1_131 Up = Q.
n——+0oo n o

Then lim w, = a.
n—-+4o0o

n

Example 3.6. Find nl_l)gloo él RCR

We have ¥k € {1,2,...,n} n n n

2

< <
n+n n2+k " n2+1
2 2 2

where an S A E ST Since nl—lﬁloom +n = nl—lgloom =1, then by

the squeeze technique, we obtain,
lim 3 = 1.
n—+oo g1 n? + k
Theorem 3.6. If lim u, =1, then lim |u,|=|l|.
n—-+oo n—-+00
lim w, =0l= lim |u,|=|l].
n—-+0o n——+o0o

Proof. Tt follows from the inequality ||| — |y|| < |z — y]. O

Remark 3.2. The converse is in general wrong.

Example 3.7. Consider the sequence defined by ((—1)"),cy. One has grf lun| =

lim [(—1)"| =1, despite that lim wu, = lim (—1)" does not ewist.
n—+oo n—-+o0o n—-+oo

Remark 3.3. lim u, =0<«= lim |u,|=0.

n—-+o0o n—-+o0o

3.0.4 Combination Rules for convergent sequences

Theorem 3.7. Suppose that the following sequences are convergent (up)nen, (Un)nen-

Set lim u, =a, lim v, =b, Then
n—-+00 n—-+00

1)Ve eR, lim cu, =c lim u, = ca.
n—-+4o0o n—-+4o0o

2) lim u,+v,=a=xb
n—-+00
3) lim u,v, = ab
n—-+00
a

4) If (Vn € N) (up £0), if b#0, then lim — =2,

n—-+00 v, b
Proof. 1) We assume ¢ # 0, since this result is trivial for ¢ = 0, Let £ > 0 and note that

we need to show that |cu, — ca| < € for large n. Since lim wu,, = a, there exists N such

n—-+o00
that

Vn>N:>|un—a]<£.

]
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Then
Vn > N = |cu, — ca| < e.
2) Let ¢ > 0; we need to show that |u, £ v, — (a £b)| < e, for large n, we note that

|up, £ v, — (a £b)| < |u, —a| + |v, —b)|. Since there exists Ny such that

€
Vn>N1:>|un—a|<§.

Likewise, there exists Ny such that

Vn>N2:>|un—a|<%.
Let N = max {Ny, No} . Then clearly
Vn >N = |u, v, — (a£b)| <e.

3) The trick here is to look at the inequality

|unvy, — abl = |upvy + Upb — upb — ab| < |uyv, — wpb|+|unb — ab| = |uy| v, — bl4|b] |u, — a

S =

4) To prove (4) it suffices to show that nl—lgloo; =
The result (4) then follows from (3). Since b # 0, and nl_igloovn = b,, there exists a positive
integer Ny such that |v,, —b| < 3 1b], for all n > N.

Also, since [b] < |v, — b + [b] < 5 [b] 4 |va|, for n = Ny, we have |v,| > 1 [b| for all

NO Therefore,

‘ = “" | \5\2 |v, — b|. Let £ > 0 be given. Since nllrfwvn = b, we can choose
an integer N1 > Ny so that |v, — b| < for alln > N1.
Therefore
i—%’és,foralln}Nl. .

Sequences which tend to infinity

lim u, = 400 < VA >0,dN € NVn > N = u, > A.

n—-+4o0o

lim w, = —c0o< VA>0,dN e N,Vn > N = u, < —A.

n—-+40o

Example 3.8. Let a € R, a > 1. Show that EIE a” =4o0. Let A> 0. Then a™ > A &

InA
n>_—.
Ina
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SO‘V’A>O,EIN:E<11I1A),VTL>N:E<IDA>:>a”>A<:> lim a" = 400

na Ina n—+00
(a>1).

3.0.5 Monotone sequences

Definition 3.5. Let (u,) be a sequence of real numbers. We say that (u,,) is nondecreasing
( resp. monincreasing) if it satisfies the inequality ¥n € N : u, < Upy1 (T€SP. Uy = Uy )

If up, < wpqq (resp. un > Upyr1), we say that (uy) is increasing (resp. decreasing).
We say that (u,) is monotone if it is either nonincreasing or nondecreasing. We say that

(uyn) is strictly monotone if it is either increasing or decreasing.

Corollary 3.1. An nondecreasing sequence is lower bounded, and the nonincreasing one
s upper bounded.

_n n—1
n+1 n

n —

Example 3.9. Let ( > be a real sequence. Since Upi1 — Up
neN

n

—1
> 0, Vn € N, then u,y1 > u, (n € N). So the real sequence (n > is
n neN

n(n+1)

mnereasing.
1 . . 1

Example 3.10. The sequence | — is decreasing because, Vn € N : u, 1 = —— <
N/ ,en n—+1

1

— = Up.

n

Remark 3.4. We check the monotony by evaluating the sign of w,+1 —u,. If the sequence

. iy . . Up+1 .
is positive, we can just compare —— with 1.
Un

Theorem 3.8. All bounded monotone sequences converge.

Proof. Let (u,) be a bounded nondecreasing sequence. Let S denote the set {u,, : n € N},
and let u = supS. Since S is bounded, u = supS represents a real number. We show
that limu, = u. Let € > 0. Since u — € is not an upper bound for S, there exists N such
that uy > u —e. Since (u,) is nondecreasing, we have uy < u, for all n > N. Of course,
u, < u for all n, n > N son > N implies u — ¢ < u,, < u, which implies |u, —u| < e.
This shows that limu, = u. The proof for bounded nonincreasing sequences is left as

exercise. O

3.0.6 Adjacent sequences

Definition 3.6. Let (u,,) (v,) be two real sequences. We say that the two sequences are
adjacent if the first is nondecreasing, the second is mnonincreasing, and their difference

converges to 0. In other words
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1) The sequence (u,) is nondecreasing and the sequence (v,) is nonincreasing,

2) The difference (v, — uy,) converges to 0, when n approaches co.
Example 3.11. u, =1+ # and v, =1 — =
Proposition 3.1. Two adjacent sequences converge, and converge to the same limit.

Proof. Let (u,) and (v,) be two real sequences such as that (u,) is nondecreasing, the
sequence (v,) is nonincreasing, and (v, — u,) converges to 0, when n approaches oc.
We first show that v, > w,. Put W,, = v,, — u,,. We check the sign of W,,; — W,, =
Upt1 — Ups1 — Up + Uy = Upy1 — Uy — (U1 — uyp) < 0, because (u,) is nondecreasing, and
(v,) is nonincreasing. So (W,,) is nonicreasing and converges to 0, thus (W,,) is positive
and v, > u,. Now we show that (u,) and (v,) converge. Indeed, one has u, < v, <
Vg, SO U, is nonincreasing and bounded above by vy, all bounded monotone sequences
converge. Likewise uy < u, < v,, we do and write the same things. v, converges. The
two adjacent sequences admit the same limit. Since limu, = ly,limv, = ly, we have

limW,, = lim(v, —u,) =0< ; = ls. O

3.0.7 Subsequences

Definition 3.7. A subsequence of a sequence (u,) is a sequence formed by deleting ele-
ments of the u, to produce a new u,. This subsequence is usually written as v, = Uym),

n € N, where p: N — N is an increasing sequence of positive integers.

Example 3.12. Let consider the real sequence defined by ((—1)"), oy The sequences
defined by :

Up = Uz = (=1 =1(n e N)

Wy = Ugpy1 = (—1)*" = —1(n e N)
are subsequences of the sequence ((—1)"),,cy -
Remark 3.5. If p: N — N is an increasing application, then ¥n € N : p(n) > n.

Corollary 3.2. Let (u,) be a real sequence, if u, converges to l. Then all subsequences

(vn = Up(y) of (un) converges to l.
Remark 3.6. The converse is in general wrong.

Example 3.13. The divergent sequence ((—1)"), oy admits the following convergent sub-

sequences ug, =1 (n € N) | ugpy1 = —1 (n € N).
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Theorem 3.9. (Bolzano-Weierstrass) Every bounded sequence admits a convergent sub-

sequence.

Proof. Let (u, be a real sequence and m € N. we say that m is a peak of the sequence
(u, if : n > m = wu, < u,. Suppose that (u,) has an infinite numbers of peaks.
ko < k1 < ko < k3 < ky < ks < ... <k, < ... and consider the subsequence (uy, ). Then
(ug, ) is decreasing since k,, > k,, = ug, < ug, and thus (uy, ) is monotone. Suppose that
(ug, ) has a finite number of peaks and let N be the last (greatest) peak. Then ky = N +1
is not a peak and so there exists k; such that ug, > wug,. Having defined k,, such that
kn > k,—1 > N, then there exists k,,1 > k, such that ug, , > u,. The subsequence
ug, is obviously increasing and so it is monotone. Now if u, is in addition bounded, so is
ug, and applying the Monotone Convergence Theorem yields that the subsequence has a
finite limit. ]

3.0.8 Cauchy sequences

Definition 3.8. A sequence (u,) of real numbers is called a Cauchy sequence if

Ve > 0,3N () e N,Vn,m > N (€) = |up — Un| < €.

sin 1 sin 2 sinn

74_?4-,_,4-2—”, n > 1 1is a Cauchy

Example 3.14. The real sequence u, =
sequence.

Indeed, for all (n,m) € N> n > m, we have

sin(m+1)  sin(m + 2) sinn
Un = Upm| = gm+1 om+2 on
< 1 1 1
< o tgmm ot
1 1
< 2m+1+2m+2+...+27+...
o 1 1
- m+1 1 = 9m
2 1 2
2

1
Since om — 0,m — oo, then

1
Ve>O,EIN(€)EN,Vn>m>N(€):>\un—um\<2—m<€.
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Example 3.15. The sequence ((—1)"), oy s not Cauchy sequence. Remark that fore =1
VNeNIn=N+1m=N+2n>m>N
and

sz = il = | (=D)V = ()" = 2> 1,

3.1 The Cauchy Criterion

Our difficulty in proving " w, — ¢ " is this: What is ¢ ? Cauchy saw that it was

enough to show that if the terms of the sequence got sufficiently close to each other. then

completeness will guarantee convergence.
Theorem 3.10. Every Cauchy sequence is bounded [R or CJ.

Proof. 1 > 0 so there exists N such that m,n > N = |u,, — u,| < 1. So for m > N,
|um| < 14 |uy| by the A law. So for all m

[tm| <1 Jua| + Jug| + -+ + Jun].

m
Theorem 3.11. Every convergent sequence is Cauchy.
Proof. Let u, — [ and let ¢ > 0. Then there exists N such that
kE>N=|u,—1| <e/2
For m,n > N we have
lum — 1] < g/2
lu, — 1] < e/2
So
Uy, — Up| < |t — | + |upy, — |
by the A law
<e/2+¢e/2=¢
m

Theorem 3.12. Every real Cauchy sequence is convergent.

Proof. Let the sequence be (u,). By the above, (u,) is bounded. By Bolzano-Weierstrass

(un) has a convergent subsequence (uy,, ) — [, say. So let € > 0. Then
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3Ny such that  r > Ny = |u,, — 1] <¢&/2

3N, such that m,n > Ny = |u,, — u,| < /2
Put s := min {r | n, > No} and put N = ny. Then

3

myn =N = |u, — | = |uy — Up, + Upn, — 1| < |ty — Uy, 5

Flun, — 1) < S+
Uy, — -
S >

Theorem 3.13. Every complexr Cauchy sequence is convergent.

Proof. Put z, = x, + iy,. Then z,, is Cauchy: |z, — x| < |z, — 2| (as |Re(w)| < |w|
). So x, = z,y, — y and so z, — = + iy. O

Example 3.16. Using Cauchy criterion, show that the sequence

1 1
n=1+=-+..+—-n=>1
u tgt o (n>1)
diverges.

Letée]o,%[. Then forn > 1:

| | Ly b4
Uy, — Up, —_— =
2 ntl nit2 9
T TR O S O
“ on 2n T 2n—n2n c

So the Cauchy criterion is not satisfied.

3.2 Limit supremum and limit infimum

3.2.1 Short version

3.2.2 Generalization of the notion of the limit

Definition 3.9. A number a is said to be an adherent point (also closure point or point
of closure or contact point) of a sequence {u,} if there exists a subsequence of {u,} that

converges to a.
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Example 3.17. Let us consider the sequence {u,} defined byu, = (—1)" (1+ %) (n € N).

Upper limit, lower limit:
limu,, = sup Ad {u,}, limu,, = inf Ad {u,}.
Note that limu,, and limu,, exist always in R whatever the sequence {u,,} .

Moreover if the sequence is convergent then 1&1 u, = | < limu,, = limu,, = (.
n o

Example 3.18. Let the sequence {u,} be such that im u, = . Then Ad {u,} = {l}

and consequently limu,, = limu,, = [.

Example 3.19. For the sequence {u, =n,n € N}, we have Ad{u,} = {+o00}. So

limu,, = limu,, = +o00.

Example 3.20. Let the sequence {(—1)" ,n € N}. Then Ad{u,} = {—1,1}. so limu,, =
sup{—1,1} =1, limu,, = inf {—1,1} = —1.

3.2.3 Long version

Let (s,), be a sequence of real numbers and define the sequences

u = sup {Sk, Sk+1, Sk42,- .-} = SUP Sy,
n>k

ly = inf {sk, Sk11, Ska2, ...} = inf s,
n>k

For a simple example, consider the sequence s,, = 1/n. Then for each index k

{1 1 1 } 1
=S — T, T, ... = —
Uk up k7k+17k+27

because 1/k has the smallest denominator of all the fractions inside the braces, thus it

must be the largest fraction. On the other hand,

=i f{1 LI }—o
= 111 k7k‘—|—1’k‘—|—27 =

because the fractions inside the braces get smaller and smaller, approaching O .

For another example, consider the alternating sequence s, = (—1)". In this case,
U = Sup {(_1)ka (_1)k+17 (_1)k+27 .- } =1
because the numbers inside the braces are always either —1 or 1 . Similarly,

lp = inf {(=1)*, (=1)*"" (=), ..} = -1
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Here is one more example that in a sense combines the previous two: s, = (—1)"/n. For

every index k

ukzsup{<—1)k (=D (_Dm,...} :{ 1/k i kis even

k7 k+17 k42 1/(k+1) ifkisodd

while

o f{(—l)’“ () (=1)F* } —1/(k+1) ifkis even
=1n , , s =
g ko k+1 7 k42 ~1/k  ifkisodd

There are also sequences for which (u) or (Ix) may be equal to plus or minus infinity.

Consider the simple sequence s, = 2n for which we get
u = sup{2k, 2k + 2,2k +4,...}

The supremum equals plus infinity because the set in braces has no finite upper bounds.
On the other hand,
I, = inf{2k, 2k + 2,2k + 4,...} =2k

is well-defined for all k.

The following lists the basic properties of the two sequences (uy) and (Ix).

Lemma 3.14. Let (s,) be a given sequence of real numbers.

(a) The sequences (ug) and (i) bound the sequence (s,) in the following sense:
e < sp < ug

(b) (ug) is a nonincreasing sequence, and (ly) is a nondecreasing sequence.

Proof. (a) is clear from the definition of supremum and infimum of sets.

(b), we show that for every index k
up > uprr  and I <l
For the first inequality, recall that for every k,

U = SUP {Sk, Sk41, Skp2s - - -}

Uk+1 = SUpP {8k+1, Sk+2; Sk+35 - - }

The only difference between the two quantities is that the second set doesn’t contain

(sg). If (sg) is less than or equal to one of the other numbers sjy1, Sky2,. .. inside the
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braces, then the supremum isn’t affected by dropping it, and we have w1 = ui. But if
sk is greater than all the other numbers inside the braces, then dropping it will reduce

the supremum: w1 < uy. O

The previous Lemma shows that the bounding sequences u; and [, are monotone
sequences. As such, each can either have a real number for a limit or diverge to oo
or —oo. Because uy is nonincreasing, if its limit is a real number, then it must be the

greatest lower bound or infimum of the sequence u; and can thus be represented as

lim w;, = inf u;, = inf sup {sx, Skr1, Skra, ...+ = inf sup s
k=500 k>1 k>1 P {8k, Ski1s Sh2s -} k21n>1,2"

Similarly, for I, which is nondecreasing, we can write

lim [, = suply = supinf {sk, Sk11, Skt2, ...+ = sup inf s,
k—o0 k>1 k>1 k>1nzk
If the limits are oo instead of real numbers, then we use those symbols to indicate the
limits. With this in mind, we have the following definition.
Let s, be a given sequence of real numbers. If the sequence u; converges to a real

number, then its limit is the limit supremum (or limit superior) of s, and denoted by

limsup s,, = inf sup {s,, Sni1, Sni2s - -} = Mg _oolg
n—o0 n>1

If u; diverges to oo or —oo, then we use these symbols to denote the limit supremum.

Similarly, the limit infimum (or limit inferior) of s, is

liminf s, = supinf {s,, Sp11, Sni2, - - -} = My oolk
n—oo n>1

or 0O Or —00 as appropriate.

For example, referring to the example we discussed earlier, we have for s, = 1/n

1 — 1
limsup — = limg 0o~ =0, liminf — =lim;_, . 0 =0
n—oo M k n—oo 1
Similarly, for s, = (—1)"
limsup(—1)" = limy o1 = 1, linl)inf(—l)" = lim;_,(—1)=—1
n—oo n—oo

And for s, = 2n

h{ln_)sogp(Zn) = 00, hﬁgggf@n) = leIEO 2k = o0

Notice that of the above three sequences, only 1/n converges to a real number, and it has
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the property that its limit supremum and limit infimum are equal real numbers.

Theorem 3.15. A sequence (s,) converges to a real number s if and only if

limsups, = liminfs, = s
n—»00 n—00

Proof. First, we assume that limsup,,_, . s, = liminf,, ;. s, = s is given and prove that

s, must converge to the number s. By

ln§8n<un

Since lim,, o 1, = s and also lim,,_,, u,, = s, the squeeze theorem implies that lim,,_, s,
exists and equals s.
Conversely, assume that s, converges to a number s. Then by the definition of

convergence, for every € > 0, we can find a positive integer N such that
|sp, —s| <e foralln >N

or equivalently,

s—e<s,<s+e foralln>N

In particular, s,4; <s-+e¢eforall j =1,2,3,... and n > N, and this implies that
sup {Sn, Snt1, Sni2y .-y <s+¢e foralln >N

because s+ ¢ is an upper bound of the set {s,, Sp11, Snt2, - - .}, while the supremum is its
least upper bound.
Similarly, because s,y; > s — ¢ for all j, we infer that s — ¢ is a lower bound for

{Sns Snt1, Snt2, - - -}, and therefore, the greatest lower bound of this set satisfies
inf {s,, Sp11, Spao,...} >s—¢e foralln > N
From above, we conclude that
s—e<l,<u,<s+e¢ foralln>N
These inequalities imply the following:

lup, —s| <e, |l,—s]<e foralln>N
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Since these inequalities hold for all € > 0, we conclude that

lim v, = s and lim [, = s.
n—oo n—oo

An immediate consequence of the above theorem is the following:
Corollary 3.3. Iflimsup,,_,. s, # liminf, . s, for a sequence (s,), then (s,) diverges.

Notice that the above corollary includes the cases where limit supremum or limit
infimum are oo or —oo. For example, the previous Corollary implies the divergence of
both of the sequences (—1)" and 2n that we discussed earlier. A sequence (s,) can have
a limit s only when the upper and lower bounding sequences meet:

h<lh<- - <L<--mse - <uyp<---<up<uy

If the lower sequence does not meet the upper one, then there is a nonempty open interval
of numbers ([, u) between them:

Lh<h< = liml,=l<u=limu, + - <uy <y
n—oo

n—o0

The sequence s,, cannot converge to a limit if the interval (I, u) is not empty, i.e., u—1 > 0
because not matter how large the index N we choose, there are terms s, < [ and other
terms s,, > u with k,m > N; so if we choose, say, ¢ = (u —[)/2, then no valid threshold
index N can be found to match such values of ¢.

Every sequence (s,) has a limit supremum u and a limit infimum / (they could be co
or —oo if (s,,) is unbounded). Although u and [ are limits of monotone sequences (uy) and
(Ix) that are derived from (s,,), these bounding sequences may or may not contain terms
of s,; in fact, there are sequences where u; # s, and [ # s, for every k and every n. On
the other hand, the definitions of the bounding sequences suggest that the numbers (uy)
and (l) are increasingly aligned with the terms of (s,) as k and n get larger. This raises
a natural question: are there subsequences of (s,) that converge to the limits v and [ 7

To answer this question, let (s,) be a given sequence and consider its upper bounding

sequence

U = Sup {Sk, Sk415 Sk+25 - - }

If w is the limit supremum of s,, then because uy is a nonincreasing sequence,

w = inf up = lim wuy
k>n k—o0
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If we pick any number € > 0, then there is a positive integer N such that
up—u=luy—ul<e forallk>N
Further, u;, > s, for all n > k so that
Sp<up<u-+e foralln>N

Next, since uy, is the least upper bound of the set {sg, Sgi1,Skro,...} for each k and
further, u < uy for all k, it follows that u — € is not an upper bound of this set. This

means that there is an integer m > 0 such that u — & < spi,,. If £ > N, then
U—€< Sprm<ut+e k>N

These inequalities help us identify a subsequence of s, that converges to u.

Theorem 3.16. The following statements are equivalent
(a) If A has a supremum or least upper bound, then it is unique. Also, a greatest lower
bound is unique, if it exists. (b) There is a sequence a, in A that converges to sup A.

Also there is a sequence in A that converges to inf A.

Proof. a) Let r = sup A. If v is also a least upper bound of A, then in particular, 7’ is
an upper bound, so r < /. Similarly, v’ < r since r is also an upper bound of A, and »/
is least by assumption. It follows that v’ = r. The proof that the greatest lower bound is
unique is essentially the same.

(b) We prove the assertion about sup A and leave the one about inf A as an exercise.
First, if s = sup A is in A (e.g., if A is a finite set), then the constant sequence a, = s
converges to s (trivially), and the proof is finished. Next, suppose that s is not in A
(hence, A is infinite). If sup A = oo, then for every positive integer n there is an element
a, of S such that a,, > n. It follows that a, diverges to oo and thus to sup A. Finally,
let sup A = s < co. Then there is an element of a; € A such that s —a; < 1; if not, then
s> a+1foralla € A, and thus s is not the least upper bound. Therefore, s—1 < a; < s
Similarly, there is as € A such that ay > s — 1/2 and so on; for every n, there is a, € A
such that s — X < a, < s Since lim,_,(s — 1/n) = s, the squeeze theorem implies that

lim,,_oo @, = S. O
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3.3 The Stolz-Cesaro Theorem

Theorem 3.17. If (b,)

then for any sequence (ay), C R one has the inequalities:

. 15 a sequence of positive real numbers, such that 3272, b, = 0o,

ay +ao + -+ a,

l < i 0. 3.2
ool byt by bt by o Pnocon, (3:2)
liminf 020 T g, e (3.3)

n—00 by +by+ -+ b,
In particular, if the sequence (ay,/by), has a limit, then

. apt+as+---Hay . Gy
lim = lim —.
n~>oob1+62++bn n~>oobn

Proof. 1t is quite clear that we only need to prove (3.2), since the other inequality follows
by replacing a,, with —a,,.

The inequality (3.2) is trivial, if the right-hand side is +00. Assume then that the
quantity L = limsup,,_, ., (a,/b,) is either finite or —oo, and let us fix for the moment
some number ¢ > L. By the definition of limsup, there exists some index k € N, such
that

% <0, Vn>k (3.4)
Using (3.4) we get the inequalities

ap+ag+ - ta, <ap+--+ag+(bgy1 +bgo+...by), V> k.

If we denote for simplicity the sums a; + --- 4+ a, by A, and by + --- + b, by B,, the

above inequality reads:
AHSAk—l-E(Bn—Bk), Vn > k,

so dividing by B,, we get
A, A — (B,
— <l —.
B, — * B,

Since B,, — 00, by fixing k and taking limsup in (3.5), we get limsup,,_,.. (4,/B,) < ¢.

(3.5)

In other words, we obtained the inequality

. ay + -+ ap
limsup ———— < /¥, V(> L,
nosel by 4 by =

45



which in turn forces

. ay + -+ ap
limsup ———— < L
ol b4t by, =

]

Remark. An equivalent formulation of the above Theorem is as follows: If (v,), is
a strictly increasing sequence with lim, .y, = oo, then for any sequence (x,),, the

following inequalities hold:

. T, . Tp — Tp—1
limsup — < limsup ———
n—oo  Yp n—oo  Yn — Yn—1
... X .. oy T Tp—1
liminf =% > liminf —>———"—
n—oo yn n—o0 yn — yn_l

In particular, if the sequence <M> has a limit, then

Yn—Yn—-1

. L, . Tp — Tp—1
lim — = lim —.
n—oo yn n—oo yn —_ yn_l

Indeed (assuming all the y,, s are positive, which happens anyway for n large enough), if
we consider the sequences (a,), and (b,),, defined by a1 = 1,0y = 1, and a,, = x,,— 2,1,
bn = Yn—Yn_1,n > 2, then everything is clear, since x,, = a1+- - -+a, and y,, = b1+ - -+0b,,.

The Stolz-Cesaro Theorem has numerous applications in Calculus. Below are three

of the most significant ones.

Theorem 3.18. Cesaro’s Theorem

For any sequence (a,), C R one has the inequalities:

a1 +as+---+a

. n .

lim sup < lim sup a,,
n—oo n n—00
. . 01 Faxt---+a o

lim inf > liminf a,.
n—roo n n—oo

In particular, if the sequence (ay,), has a limit, then

ay+as+---+ay

lim = lim a,,.
n—oo n n— oo
Proof. Particular case of Stolz-Cesaro Theorem with b,, = 1. O

Remark 3.7. An equivalent formulation of the above Theorem (proven using the alterna-
tive version of Stolz-Cesaro Theorem) is as follows: For any sequence (x,),,, the following

inequalities hold:

. L, .
limsup — < limsup (z,, — Tp_1)
n—oo n n—00

liminf — > liminf (z, — x,_1)
n—oo n, n—00
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In particular, if the sequence (x, — x,_1), has a limit, then

.. .
lim —* = lim (2, — Tn_1) -
n—oo n n—00

3.4 Sequences defined by recursion formulas

Definition 3.10. Let f : D C R — R. A recursive sequence is a sequence in which terms

are defined using one or more previous terms which are given by ug € D and the relation
Vn e N:uy = f(up)

We suppose that f (D) C D, and so the sequence is well defined.

Example 3.21. Let u,y 1 = /u, + 2, ug = 1, we have f (z) = Vax +2,D = [-2,400[ et
f(D)=10,+o00[ C D. Thus uy, is well defined.

Lemma 3.19. If f is continuous on D and the sequence {u,} converges tol € D, then
I=f().
Theorem 3.20. Let {u,} be a real sequence recursively defined by u,+1 = f (uy).

(a) If [ is nondecreasing then the sequence (uy) is monotone. More precisely (u,) is

monotone

1) If ug < uy, then the sequence is nondecreasing.

2) If ug = uq, then the sequence is nonincreasing.

(b) If [ is monincreasing then the sequence u,y1 < Uyp, s positive and negative alter-
natively. We set g = fof, so g is nondecreasing, we can easily verify that the se-
quences (ug,) and (ugny1) defined by ugnio = f(f(u2,)), us = f(ur) and ug,i1 =

f(f(uan-1)), w given, are oppositely monotone such as that g(ui) —uy; = f(f(uq))—
ur and g(f(un)) — f(ur) = F(F(F(un))) — f(ur) have different signs.
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CHAPTER

4

REAL FUNCTIONS OF REAL
VARIABLES

4.1 Introduction

Let D € Ri.e D is a subset of the real numbers. Often we need to associate with x € D
a new real number which we denote at the moment by f(x). For example the absolute

value.

Definition 4.1. Let D € R. A function f : D — R is a rule which assigns to every
x € D exactly one real value f(z). For this we write v — f(x) and say that x is mapped
onto f(x), or f(z) is the value of [ at x.

We call D the domain of the function f, sometimes we write D(f) or Dy instead of
D.So Dy ={z € D: f(x) exists}.
The set of all functions is denoted by F (D, R).

Definition 4.2. The set {y = f (z), x € D} is called the range of f and is denoted by
H (f). Variable x is called argument or independent variable and variable y is called

dependent.
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Definition 4.3. Let f,g € F(D,R) and A € R. We define the following important

operations:
1L (f+9)(z)=[f(z)+g(x) (Vo€ D)
2. (f.9)(z) = f(z).g(x) (V€ D)
3. (A\g) (z) () (VA eR,Vz € D)

4 IfVeeD: f(x) 40, (;) (z) = f(lx)

Definition 4.4. Let f and g be real functions with domains D(f) and D(g) . Let H(f) C
D(g). Then under the composition of function f and g we understand function h defined
by Vo € D(h) : h(z) = g(f(x)), with D(h) = D(f).

Notation: h = gof.

Definition 4.5. Two functions f and g are equal (f = g), if
(i) D(f) = D(g)
(it) Ve € D(f) : f(z) = g(x)

Remark 4.1. In general gof # fog.

Definition 4.6. Graph of function f is a set of ordered pairs of real numbers (x, f(z)),
where x € D(f). We write

graphf ={(z, f(z))/z € D(f)}

Even and odd functions

Definition 4.7. Let D C R such that (Vx € D) = (—z € D)
We say that function f: D — R is even if and only if (Vx € D), (f (—x) = f(x)).
We say that function f: D — R is odd if and only if (Vx € D), (f (—x) = —f(x)).

Periodic functions

Definition 4.8. A function f : D — R is called periodic if 3 T > 0 such that
~YeeD=aotTeD, flx+T)= f(x)
~Vx € D, f(x+T) = f(x). Number T is called a period of f. The smallest positive period

is called primitive.

Remark 4.2. Let T' > 0 be a period of f, then

Vee R,VneZ: f(x+nP) = f(z).
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Theorem 4.1. (i) If [ is periodic with period P and function g such that H(f) C D(g)
then a composition h(x) = g(f(x)) is periodic with the same period p. (i) If f is periodic
with period p and a € R, a # 0; then function g(x) = f(azx) is periodic with period 5.

Proof. Just do it. O

Bounded Functions

Definition 4.9. Let f: D — R and let f(D) the set of all the values of f.

We say that function fis bounded above on its domain D if f(D) is bounded above
i.e. AM e R,Vx € D : f(x) < M.
We say that function f is bounded below on its domain D if f(D) is bounded below i.e.
dm e R,Vz € D: f(x) = m.
We say that function f is bounded on its domain D if f(D) is bounded i.e. 3A € R,Vx €

D |f(z)] <A

Remark 4.3. If f is bounded on D, then f(D) admits a supremum M and an infimum
m. We denote M = supf (z), and m = ingf (x). We have
e

€D

VeeD: f(x) <M

Ve > 0,30 € D: f(x 0)>M—8
VeeD: f(x)>

Ve > 0,3z9 € D : f(:vo)<m+5

supf(a:):M<+oo<:>{
zeD

zeD

inf f () = m>—oo<:){

Monotone functions

Definition 4.10. Consider f: D C R — R, and set M C D.

1) f is nondecreasing on M < Vxi,xe € M, 1 < 29 = f(x1) < [ (22)
2) fis nonincreasing on M <Ny, 20 € M, 21 < 29 = f (1) = f (22)
3) f is increasing on M < Vry, 29 € M, 1 < 19 = f (1) < f (22)
4) f is decreasing on M < Nxy, 19 € M, 11 < 1o = f (21) > f (22)

Definition 4.11. If f satisfies any of condition (1 — 4) we call it monotone. If f has
property (3 ) or (4 ), we call it strictly monotone.

Corollary 4.1. We can check that in case where f is increasing or decreasing then we
have x1 # xo = f (x1) # f (x2), so [ is injective.

A sum of two increasing (decreasing) functions is an increasing (decreasing) function.
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Inverse functions

Definition 4.12. Let f: D(f) +— R be an injective function with range H(f). Inverse
function of f (denoted f=') is defined by the relationy = f(x) <= x = f~1(y). Obviously
the domain D(f~') = H(f) and range H(f~') = D(f).

Remark 4.4. (i) Graph of f=' is symmetric to the graph of f with respect to a line
Y=

(1) Yo € D(f) : f7H(f(2)) = .

(tii)vy € D(f~1) = H(f): f(f'(y)) = y-

(iv) (f~)~ = .

Lemma 4.2. Let A, B be two subset of R. Let f : A — B be a bejective and strictly

monotonic function. The f~! is strictly monotonic function, the same monotonic as f.

Proof. WLOG, we can suppose that f is strictly increasing. let y;,y2 be two elements of
B such that y; < yo, then we prove that f~'(y;) < f~'(ys). Since f is bejective then there
exist 1, zy such that f(z1) =y, and f(xz2) = yo. Let us proceed by contra-positive,
we suppose that x; > xo then y; = f(x1) > f(x2) = yo which is a contradiction with
Y1 < Y. O

Lemma 4.3. Let I be an interval of R and f : I — R be a strictly monotonic function

such that f(I) is an interval, then f is necessary continuous on I.

Proof. WLOG, we can suppose that I is not a trivial interval I = 0, I = {a} and we
suppose that f is strictly increasing. Let a € I, if a > inf(I), we prove that hm L f(z) =

f(a) and if a < sup(I), we prove that xlifgrf(x) = f(a). Indeed let a € I, if a > inf(l),
by monotonic limit theorem, there exists a real [ such that lim f(z) = [, and | < f(a).
Actually, | = sup{f(z),z € I,x < a}, we aim to prove that ?_2 f(a). By contrapositive,
suppose that | < f(a), then there exists [ < m < f(a), there exists a € I such that
a < a. By the hypothesis that f is increasing, we get f(a) <1l <m < f(a). f(I) is an

interval, so there exists ¢ € I such that f(c) = m.
o If ¢ > a, and f is supposed to be increasing, hence f(c) > f(a) > m
« If ¢ < a, monotonic limit gives f(c) < I < m, which is a contradiction, thus f(a) = .
Similarly, with the right limit. O

Lemma 4.4. Let I be an interval of R and f : I — R be a continuous and injective

function. Then f is strictly monotonic.

Proof. By contrapositive principal, we suppose that f isn’t strictly monotone, thus
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e Jr,yel:x<yand f(z)> f(y)
o Wy el <y and f(a') < f(y)

The segments [z, '], [y,y'] are defined by [z, 2] = {tx + (1 —t)2’,t € [0,]} and [y, '] =
{ty + (1 —t)y’,t € [0,1]}. Then let us define the following functions:

a:[0,1] — R:t—tx+ (1—1t),

B:[0,1] —R:t—ty+(1—1t)y.

a(t) and [(t) belong to the interval I. Now we consider the function defined by

¢:10,1] — Rt — fla(t) = f(BQ)).

(1) a, B, f are continuous so ¢,
(2) ¢(0) = f(x)—f(y) > 0and ¢(1) = f(2')— f(y') < 0. The mean theorem value implies
that there exists ¢y €0, 1] such that ¢(¢y) = 0, which means that f(a(to) = f(B(to).

Contradiction ( f is injective). O

The inverse function theorem for strictly monotonic function

Theorem 4.5. Let I be an interval of R and f: I — R be a function. Set J = f(I).
Then two of the following properties implie the third one.

1- J is an interval and f : I — J is a bejection function.
2- [ is strictly monotonic on I.
3- f is continuous on I.

more; if 1, 2 and 3 are satisfied, then the inverse function f=' :J — I is continuous,

strictly monotonic, the same as f.
Proof. o If 1 and 2 are satisfied then f is continuous (Lemma (4.26)).
o If 1 and 3 are satisfied then f is strictly monotonic (Lemma (4.27)).

 If 2 and 3 are satisfied then J is an interval (MTV theorem). f is strictly monotonic,
thus f is injective and by the way bejective.

If 1, 2 and 3 are satisfied the by (Lemma (4.25)), f~' : J — [ is strictly monotonic,

the same as f. f~!':.J — I realize a bejection from .J on I, so f~! satisfies 1 and 2,

hence f~! is continuous. O]
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Inverse image

Let f : A — B be a function, and let U C B be a subset. The inverse image (or,
preimage) of U is the set f~!(U) C A consisting of all elements a € A such that f(a) € U.
The inverse image commutes with all set operations: For any collection {U;},., of

subsets of B, we have the following identities for
(1) Unions:

(yu)=Urw

el il

(2) Intersections:

~ <ﬂ Ui) =/ ()

iel iel
and for any subsets U and V of B, we have identities for

(3) Complements:

(F ) = (U°)

(4) Set differences:

FHONV) = fTHON (V)

(5) Symmetric differences:

fUALY) = fHO)AFHV)

In addition, for X C A and Y C B, the inverse image satisfies the miscellaneous
identities

(6) (flo) ™ (V) = X N fi(y)

(7 F (YY) = Y N F(A)

(8) X C f~H(f(X)), with equality if f is injective. Let f : A — B be a function, and
let U C A be a subset. The direct image (or, simply, image ) of U is the set f(U) C B
consisting of all elements of B which equal f(u) for some u € U.

Direct images satisfy the following properties:

(1) Unions: For any collection {U;},., of subsets of A,

f(UUz‘> =Usr@).

el el

(2) Intersections: For any collection {U;},.; of subsets of A,
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f(ﬂUz) cNf ).

el i€l

(3) Set difference: For any U,V C A,

SVAU) 2 f(VONF(U).

In particular, the complement of U satisfies f <U E) D f(ANfU).
(4) Subsets: If U ¢ V C A, then f(U) C f(V) C B.

(5) Inverse image of a direct image: For any U C A,

) ou

with equality if f is injective.

(6) Direct image of an inverse image: For any V' C B,

Fwv)cv

with equality if f is surjective.
Local maximum, local minimum Local maximum and minimum are the points of
the functions, which give the maximum and minimum range. The local maxima and local
minima can be computed by finding the derivative of the function. The first derivative
test and the second derivative test are the two important methods of finding the local

maximum and local minimum.

Definition 4.13. Let f: D CR — R and g € E.

— g 1s said to be local mazimum of f if there exists o > 0 such that f is nondecreasing
on |xg — a, ko[ and nonincreasing on |xg, xo + .

— xg 1s said to be local minimum of f if there exists a > 0 such that f is nonincreasing

on |rg — a, x| and nondecreasing on |xo, xo + af.
Order relation on F (D,R).

Definition 4.14. Let f,g: D C R — R.

1) f is said to be positive f > 0, if : Yo € D : f(x) = 0 (resp. negative, f < 0 if
VeeD: f(x)<O0.

2) [ is said to be greater then g, (f
3) [ is said to be smaller then g, (f

>g), if: Ve e D: [ ()
<

Remark 4.5. We can easily check that this order relation isn’t total.
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4.2 Limit of a Function

The basic idea underlying the concept of the limit of a function f at a point xg is to study
the behaviour of f at points close to, but not equal to, . We illustrate this with the
following simple examples. Suppose that the velocity v(m/s) of a falling object is given
as a function v = v(t) of time ¢. If the object hits the ground in ¢ = 2, then v(2) = 0.
Thus to find the velocity at the time of impact, we investigate the behaviour of v(t) as ¢

approaches 2, but is not equal to 2. Neglecting air resistance, the function v(t) is given

32t,0 <t < 2,
v(t) =
>

as follows :

0,t> 2.

Our intuition should convince us that v(t) approaches 64m/s as t approaches 2 |
and that this is the velocity upon impact. As another example, consider the function
f(x) = zsin (%) , © # 0. Here the function f is not defined at = 0. Thus to investigate

the behaviour of f at 0 we need to consider the values f(z) for x close to, but not equal

At
xsin <>‘ < |z
x

for all x # 0, our intuition again should tell us that f(z) approaches 0 as x approaches

to 0 . Since

|f(2)] =

0. We now make this idea of (x) approaching a value L as = approaches a point x, precise.
In order that the definition be meaningful, we must require that the point p be a limit

point of the domain of the function f .

Definition 4.15. Let zy € R an accumulation point of a subset D # ¢ C R and f : D
R a function defined on a neighbourhood of xy except may be at xo. The function f has a

limit at xq if there exists | € R such that
Ve > 0,30 (2g,6) >0,Vr: 0 < |z —xo| < 0= |f(x) = <e

Customary we write: h_}m fx)y=lor f(x) =1,z — x
T—T0
Shortly

lim f (z) =1 Ve > 0,30 (xg,6) >0,Vr: 0 < |z —zo| <d=|f(x) = <e

T—T0
Uniqueness of the limit
Theorem 4.6. If f admits a limit then it is unique.

Proof. Just do it. O
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One-Sided Limits
It is possible for a function to fail to have a limit at a point and yet appear to have limits
on one side. If we ignore what is happening on the right for a function, perhaps it will

have a “ left-hand limit.” This is easy to achieve

Definition 4.16. We say that a function f has right-hand limit (resp. left-hand limit)
at o if Ve > 0,30 > 0,Vo :xg < x <x0+ 9 (Tesp. ©g—0 <z <mo) = |f(x) =] <e¢

we note

lim f(z)=f(xo+0), lim f(z)=f(zo—0).

rx—xo+0 rx—x9—0

We have

lim f(z) =1l<= lim f(z)= lim f(z)=1

T—T0 z—z0+0 x—x0—0

Limit at infinity

Definition 4.17. Let xo = +00 be an accumulation point of a given subset D. Then

lim f(z)=1&Ve>0,dJA>0,Ve > A= |f(x) =l <e

T—r+00

Let xg = —o0 be an accumulation point of a given subset D. Then

lim f(z)=1&Ve>0,dJA>0,Ve < —A=|f(z) -l <e¢

T——00
Infinite limits

Definition 4.18. Let xy € R be an accumulation point of a given subset D and f: D —
R. Then

lim f (z) =400 < VA>0,30 >0,V : 0 < |z — x| <0 = f(x) > A

T—T0

lim f (z) = —00 & VA>0,30 >0,V :0< |z —zp| <0 = f(x) < —A

e
Main limit’s theorems

Our first theorem allows us to reduce the question of the existence of the limit of a
function to one concerning the existence of limits of sequences. As we will see, this result
will be very useful in subsequent proofs, and also in showing that a given function does

not have a limit at a point x;.

Theorem 4.7. Let f: D C R — R be a given function and xy be an accumulation point

of a given subset D. Then
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1)lim f () =

T—rIQ

if and only zf
2) For all sequence (xy,),cn » Tn € D/ {0} and nl_l)gl@% = xo we obtain nl_i)rfoo]” (xn) =1,
(I finite or not.)

Proof. Since xq is a limit point of D, there exists a sequence x,, € D with x,, # xy for all
n € Nand lim z, = zg.
n—-+o0o

Suppose lim f (x) = 1. Let x, be any sequence in D with z, # xy for all n € N and

1_1&1 Ty, = Tp. Let e > 0 be given. Since hm f( ) = [, there exists a 0 > 0 such that

|f(z) =1 <e forall ze€ D,0<|z—mx <. (4.1)

Since lim x, = xg, for the above ¢, there exists a positive integer ngy such that

n——+o0o
|z, — x| < 6, for all n > ng. Thus if n > ng, by (4.1), |f(z,) — | < e. Therefore
lim f(z,) =1.

n—-400

Conversely, suppose that Z—Z>T f(x,) =1 for every sequence x,, € D with z, # z, for all

n € N and 1_131 T, = Tg. Suppose h_}m f(z) # 1. Then there exists an £ > 0 such that
n o) r—x0

for every 0 > 0, there exists an x € D with 0 < |z — x| < § and |f(z) — [| > €. For each
n € N, take § = % Then for each n, there exists z,, € D such that

1
|xn —ZL‘0| < — and |f(xn) - l| =€
n

Thus x,, — xg, but f(z,) does not converge to [. This contradiction proves the result.
]

Some limit laws We now state some limit laws for functions.

Theorem 4.8. Let f,g: D C R — R be real functions, and xoq an accumulation (cluster)
point of D. Suppose that le f(z)=1, ILm g(x) =1y, I3, € R.
T—T0 T—T0

Then

1) lim (f (z) £g(2)) = b +1

2) lim (Af (z)) = Al (A € R)

3) fim (f () g (x)) = hls

T—To

4) Jim | f ()] = [{]

I b
5) g}%og (z) il 7 0.

Proof. The proofs are left as an exercises. (To prove the results, use the sequential

criterion for limits and the limits laws for sequences). O
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Theorem 4.9. Let f,g: D C R — R be functions such that Vx € D : f(z) < g(z).
Suppose that lim f (x) =1, and lim g (x) =ls. then I} < ls.
T—x0 T—x0

Proof. Set F(x) = g(x) — f(z) and L = Iy — [3. It is sufficient to prove that L > 0. We
prove the contrapositive. Suppose then that L < 0. Let € > 0 be such that L +¢ < 0.
Then since Ili_}ngrclo(g — f) (z) = L, there exists § > 0 such that if 0 < |x — 2| < ¢ then
(9—f)(x) = L+e<0. Hence, (g — f) (x) < 0 for some = € D. We can give another

proof using the sequential criterion for limits. O]

Corollary 4.2. f: D C R — R be a function and let xg be an accumulation point of

D. Suppose that My < f(x) < My for all x € D and suppose that ILm f(z)= L. Then
T—To

M; <L <M.

Corollary 4.3. Let f : D C R — R be a function and xy be an accumulation point of

D. If h_}mf(a:) =1 € R, then 36 > 0 such that for 0 < |z —xo| < § the functionf is
T—T0

bounded.

Theorem 4.10. Let f,g: D C R — R be a functions and xy be an accumulation point
of D. If g is bounded on D and lim f (x) =0, then lim f (x)g(x) =0.
T—T0 T—T0

Proof. Use squeeze technique. O
Theorem 4.11. Suppose that the limit lim f (x) =1, exists. Then lim |f(x)| =l
T—T0 T—x0

Since maxima and minima can be expressed in terms of absolute values, there is a

corollary that is sometimes useful.

Corollary 4.4. Suppose that the limits lim f () =L, and lim g (x) = M, exist and that
T—T0 T—T0
xg is a point of accumulation of Dy N D,. Then ILm max {f(z),g(x)} = max {L, M},
T—TQ
and h_}m min{f(x),g(x)} = min{L, M}.
T—x0

Proof. The first follows from the identity maz { f(z), g(z)} = {239 4 ‘f(x);g(x)l and

the theorem on limits of sums and the theorem on limits of absolute values. In the same
} = f(:v);rg(w) _ \f(fr)gg(:v)l. O

way the second assertion follows from min { f(z), g(x)

4.3 Continuous functions

Let f be a function defined on an interval [a,b]. We shall now consider the behaviour of

f at points of [a, b].
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Continuity at a Point

Definition 4.19. A function f is said to be continuous at a point xg,a < xog < b, if

lim f(z) = f(zo)

Tr—xQ

In other words, the function is continuous at xq, if for each € > 0,36 > 0, such that
|f(z) — f(x0)| < &, when |x — x| < 0
Definition 4.20. A function f is said to be continuous from the left at xg, if

lim f(z) = f(wo)

rz—x0—0

Also f is continuous from the right at xq, if

lim f(z) = f(wo)

rz—x0+0

Clearly a function is continuous at z( if and only if it is continuous from the left as

well as from the right.

Definition 4.21. A function f defined on a closed interval [a, b] is said to be continuous
at the end point a if it is continuous from the right at a,

i.e.,
Jim f(@) = f(a)
Also the function is continuous at the end point b of |a,b] if
lim f(z) = f(b)
z—b—0
Thus a function f is continuous at a point zq if
(i) limg,, f(2) exists, and

(ii) limit equals the value of the function at z = .

Continuity in an Interval

A function f is said to be continuous in an interval [a, b] if it is continuous at every point

of the interval.
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Discontinuous Functions

A function is said to be discontinuous at a point zy of its domain if it is not continuous

there. The point z( is then called a point of discontinuity of the function.

4.4 Types of discontinuities

(i) A function f is said to have a removable discontinuity at z = x¢ if lim,_,,, f(x) exists
but is not equal to the value f(xg) (which may or may not exist) of the function. Such
a discontinuity can be removed by assigning a suitable value to the function at = = z,.

(ii) f is said to have a discontinuity of the first kind at = = zq if lim,_,,,_o f(z) and
lim, .40 f(z) both exist but are not equal.

(iii) f is said to have a discontinuity of the first kind from the left at © = xz¢ if
lim, ., o f(z) exists but is not equal to f(xz¢)

Discontinuity of the first kind from the right is similarly defined.

(iv) f is said to have a discontinuity of the second kind at = = x if neither lim,_,,,_o f(x)
nor lim, .10 f(z) exists.

(v) f is said to have a discontinuity of the second kind from the left at x = x, if
lim, ., o f(z) does not exist.

Discontinuity of the second kind from the right may be defined similarly.

Theorems on Continuity

Theorem 4.12. A function f defined on an interval I is continuous at a point xo € I

if for every sequence {c,} in I converging to xo, we have

lim f(cn) = f(zo)

n—oo

Proof. First let us suppose that the function f is continuous at a point zo € I, and {c,}
is a sequence in I such that lim, . ¢, = xg.

Since f is continuous at xg, therefore, for any given € > 0,3 a § > 0, such that

|f(z) = f(xo)] <&, when 0 < |z — x| < ¢ (4.2)
Again, since lim,,_, ¢, = x¢, therefore, 3 a positive integer m, such that

lcn — 20| < 0,Yn >m (4.3)
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From (4.2), putting = = ¢, we have

|f (cn) — f(z0)| < &, when |¢, — x| < ¢
= |f (cn) = f(xo)] <&, Vn>m [using 2]
= the sequence {f (c,)} converges to f(zo)

or

lim f(cn) = f(xo)

n—o0

Let us now suppose that f is not continuous at xy, we shall now show that though there
exists a sequence (¢,,) in I converging to zo yet the sequence (f(c,)) does not converge
to f(xo).

Since f is not continuous at xg, therefore, there exists an € > 0 such that for every

0 > 0, there exists an x € I, such that

|[f(z) = f(zo)| = &, when [z — x| <6

lim ¢,, = xp.

Also by taking 6 = 1/n, we find that for each positive integer n, there is a ¢, € I, such
that
1
|f (cn) — f(z0)| > €, when |c, — xo| < -
Thus, the sequence (f (c,)) does not converge to f(z), while the sequence (¢, ) converges
to xo. ]

Remark 4.6. Iflimc, = zq = lim f (¢,) # f(x0), then [ is not continuous at xy.

Theorem 4.13. If f,g be two functions continuous at a point xqy, then the functions
f+g,f—g, fg are also continuous at xo and if g(xo) # 0, then f/g is also continuous

at xg.

The proof is left as an exercise ( use the sequential criterion for limits and the laws

for sequences).

Example 4.1. Ezamine the following function for continuity at the origin:

zell® .
f(x) _ 1+el/x fo 7é 0

0 ifx=0
Now
. o xelle
dm fe) = i 7 =
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and

Jm f(z) = lim o= =0
Thus,
Also

lim f(z) = f(0)

z—0

Thus, the function is continuous at the origin.

Example 4.2. Show that the function defined as:

sin2e - yphen x # 0
fl@) =49 °

1, when x =0

has removable discontinuity at the origin.

Solution. Now

sin 2z

i ()=l 2522
so that
lim £(z) # £(0)

Hence, the limit exists, but is not equal to the value of the function at the origin. Thus
the function has a removable discontinuity at the origin.

Note. The discontinuity can be removed by re-defining the function at the origin such
as f(0) = 2.

Example 4.3. Show that the function defined by

fa) = xsinl/z,  when x # 0

0, when x =0

1s continuous at x = 0.

Solution. Now

. _ 1
glclg(l)f(x) —}E)% (xsm$) =0
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so that

lim f(z) = f(0)

z—0

Hence, [ is continuous at x = 0.

Example 4.4. A function f is defined on [0,1] by

(

—x? ifx <0
br —4 if0<z<1

422 =3z ifl<x <2

3z +4 ifx>2

Ezxamine f for continuity at x = 0,1,2. Also discuss the kind of discontinuity, if any.

Solution. Now

lim f(z)= lim (—2%) =0

z—0— z—0—
S, () = Jip (e =) =4

so that

lim () = f(0) # lim f(x)

rz—0— z—0+

Thus the function has a discontinuity of the first kind from the right at the origin.

Again
lim f(z) = lim (bx —4) =1
r—1— r—1—
. T 2 .
so that

Jim (o) = lim f(@) = 1= /(1)
lim () = £(1)
Thus the function is continuous at xr = 1.

Again

lim f(z)= lim (42 —3z) =10

T—2— T—2—
Mg, f(o) = Jup (Bo4) =10

Also f(2) =10
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lim f(z) = f(2)

T—2

Thus, the function is continuous at x = 2.

Example 4.5. Is the function f, where f(x) = z;m continuous?

Solution. For x <0, f(x) = £ = 2, continuous.

For x>0, f(z) = =% = 0, continuous. The function is not defined at v = 0.

Thus, f(x) is continuous for all x except zero.

Example 4.6. Discuss the kind of discontinuity, if any of the function defined as follows:

m_T“rl, when x # 0
flx) =
2, when x =0
Solution. The function is continuous at all points except possibly the origin.
Let us test at x = 0.

Now
. . x—l—x_
A flo) =l — =2
) . rx—=x
i S0 = Jig, =0
and
f(0)=2

Thus the function has discontinuity of the first kind from the right at x = 0.

Example 4.7. If [x] denotes the largest integer < x, then discuss the continuity at v = 3

for the function

f(x)=2—z], Vx>0

Solution. Now

lim f(z)= lim{z—[z]} =3-2=1

T—3— T—3—
A, fo) = Jlig te— el =3 -3=0
and
f(3)=0




Thus the function has a discontinuity of the first kind from the left at x = 3.

Note. The function is continuous at all points except the integer value 1,2,3, ...

Example 4.8. Prove that the Dirichlet’s function f defined on R by

1, when x is irrational
flz) =
—1, when x is rational

is discontinuous at every point.

Solution. First, let a be any rational number so that f(a) = —1.

Since in any interval there lie an infinite number of rational and irrational numbers,
therefore, for each positive integer n, we can choose an irrational number a,, such that
|a, —al < £

Thus, the sequence {a,} converges to a. But f (a,) =1 for alln, and f(a) = —1, so
that

Tim £ (a) # f(a)

Thus, the function is discontinuous at any rational number a.

Hence the function is discontinuous at all rational points.

Next, let b be any irrational number. For each positive integer n we can choose a
rational number by, such that |b, —b| < L. Thus, the sequence (b,) converges to b.

But f (b,) = —1 for alln and f(b) = 1.

Therefore  lim, o f (bn) # f(b).
Hence, the function is discontinuous at all irrational points.

Example 4.9. Show that the function f(x) defined on R by

x, when x is irrational
flz) = o
—x, when x is rational

is continuous only at x = 0.

Solution. First, let a # 0 be any rational number, so that f(a) = —a. Since in every
interval there lie an infinite number of rational and irrational numbers, therefore, for each
positive integer n, we can choose an irrational number a, such that

Thus the sequence (a,) converges to a.

1

la, —al < —
n

But

65



An, f (an) = lim @, = a

Thus

lim f (@) # f(a).a £ 0

so that, the function is discontinuous at any rational number, other than zero.

In a similar way the function may be shown to be discontinuous at every irrational
point.

It may be seen from above, that the function is continuous at x = 0 (i.e., a = 0).
However, it can be shown to be continuous at x = 0 as follows:

Let € > 0 be given and let 6 = ¢ (or any 6 < ¢ ), then

|| <0 = |f(x)— f(0)| =] — x| = |z| < e, when x is rational and
lz] <= |f(z) — f(O)] = |z| < e, when x is irrational.

Thus

2] <6 = [f(x) = fO)] <

or

limy f(x) = f(0)

z—0

Hence, the function is continuous at x = 0.

4.4.1 Continuous functions on closed intervals

We shall now study some properties of functions which are continuous on closed intervals.
In fact, we shall show that a function which is continuous on a closed interval, is bounded,

attains its bounds and assumes every value between the bounds.

Theorem 4.14. If a function is continuous in a closed interval, then it is bounded

therein.

Proof. Let f be a function defined and continuous in a closed interval I.

We shall show that if the function f is not bounded, then it fails to be continuous at
some point of the closed interval I

Let, if possible, f be not bounded above, so that for each positive integer n3 a point

xyn, € I such that f (z,) >n
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Now {x,}, being a sequence in the closed interval I, is bounded and has at least one
limit point, say &.

A closed interval is a closed set and so £ € 1.

Further, since ¢ is a limit point of the sequence (x,,), therefore, there exists (Bolzano-
Weirestrass theorem) a subsequence (z,,) of (x,) such that z,, — & as k — oo.

Also since f (xp,) > ng, for all k, therefore the sequence (f (z,,)) diverges to oo.

Thus, there exists a point £ of I such that a sequence (z,,) in I converges to £, but

Jim f (wn,) # f(E)

Thus, f is not continuous at &, which is a contradiction and hence the function is
bounded above. By considering a function — f, it can be shown in a similar way that the

function f is also bounded below. Hence, the function is bounded. O]

Theorem 4.15. If a function f is continuous on a closed interval [a,b], then it attains

its bounds at least once in |a,b].

Proof. If f is a constant function, then evidently, it attains its bounds at every point of
the interval.

Let f be a function which is not a constant.

Since f is continuous on the closed interval [a, b], therefore, it is bounded. Let m and
M be the infimum and supremum of f. It is to be shown that 3 points, «, 3 of [a, b] such
that

fla)=m, [f(B)=M

Let us consider the case of the supremum.
Suppose f does not attain the supremum M so that the function does not take the

value M for any point x € [a, ], i.e.,

f(z) # M, for any x € [a,]]
Now consider the function

1
g(r) = ——F—, Vrelad
@) = =7y Yrelod
which is positive for all values of z in [a, b].
Evidently the function g is continuous and so bounded in [a, b].

Let k(> 0) be its supremum
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m S k‘,Vm S [(l,b]

= f(z) <M —,Vz € [a,b]
which contradicts the hypothesis that M is the supremum of f in [a,b]. Hence, our
supposition that f does not attain the value M leads to a contradiction and therefore f
attains its supremum for at least one value in [a, b].
It may similarly be shown that the function also attains its infimum m.

Hence, the function attains its bounds at least once in [a, b].
O

Note It may be observed from the two preceding theorems, that the function f,
continuous on the closed interval [a, ], has the least and the greatest values m and M,
i.e., the range set of f is bounded with m and M as its smallest and greatest elements.
Thus the range set of f is a subset of [m, M|]. We shall, in fact, show later that the range
set of f is [m, M] itself and that f takes up every value between m and M.

4.4.2 Examples

1. The function f(x) = flw\’ for real z, is continuous and bounded and attains its

supremum for z = 0 but does not attain the infimum.

2. The function f(z) = _ﬁlﬂc\’ for all x € R, is continuous and bounded, attains its

infimum but not the supremum.

3. The function f(x) = =z, for all z €]0,1[ is continuous and bounded but attains

neither the infimum nor the supremum.

Theorem 4.16. If a function f is continuous at an interior point ¢ of an interval
[a,b] and f(c) # 0, then 3 a § > 0 such that f(x) has the same sign as f(c), for every
x €lc—0,c+ 4.

Proof. Since the function f is continuous at an interior point ¢ of [a, b], therefore for any

€>0,3a0d >0, such that

|f(x) = flc)] <e, Vx€lc—0d,c+]

or

fle)—e< f(z) < f(c)+e, Vr€le—0d,c+4|

When f(c) > 0, taking € to be less than f(c), we find that
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f(z) > 0,Vx €]c —d,c+ 0]

When f(c) < 0, taking € to be less than — f(c), we find that

f(z) <0,Vz €]c —d,c+ 0]

Hence the theorem.

]

Corollary 4.5. If f is continuous at the end point b of [a,b] and f(b) # 0, then there
exists an interval [b — 0,b|, such that f(x) has the sign of f(b) for all x in Jb — 6, b]

A similar result holds for continuity at a.

Note When c is an interior point of the interval, the theorem may be restated as:

Theorem 4.17. If a function fis continuous at an interior point ¢ of an interval [a, b]
and f(c) # 0, then there exists a neighbourhood N of ¢ wherein f(x) has the same sign
as f(c), for all x € N.

Theorem 4.18. (intermediate value theorem) If a function f is continuous on a closed
interval [a,b] and f(a) and f(b) are of opposite signs, then there exists at least one point
a €la, b such that f(a) = 0.

Proof. Let us suppose that f(a) > 0 and f(b) < 0.

Let S consist of those points of [a, b] for which f(x) is positive, i.e.,

S={r:a<z<bA f(z)>0}

Now

fla)>0=a€S=S5#¢

Also S is bounded by a and b.

By the order completeness property, S has the supremum, say «, where a < a < b.
We shall now show that

(i) o # a, 0 # b, and

(if) f(a) =0

(i) First we show that « # a

Since f(a) > 0, therefore 3 a § > 0 such that

f(z) >0, Vze€la,a+d|
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= Jla,a+46[C S

= the supremum « of S is greater than or equal to a + 9
=a#a

Now we shall show that « # b.

Since f(b) < 0, therefore 3 a § > 0 such that

f(z) <0, Vzx€lb—24,b

= b — 0 is an upper bound of S
=a<b—0=a#b

(ii) We shall now show that f(a) % 0 and f(«) £ 0.
If f(a) >0, then 3 a 6 > 0 such that

f(z) >0, Vze€la—id,a+]
= Ja—da+dCS

Let us choose a positive do < ¢ such that a + 0y €] a — §, + 0 [= a member o + dy

of S is greater than the supremum « of .S, which is a contradiction.
Therefore

fla) #0

Let now f(a) < 0, so that 3 a §; > 0 such that
f(z) <0, Vze€la—7id,a+d] (4.4)

Again, since « is the supremum of S, therefore, there exists a member 5 of S, where
a — 01 < [ < a such that

f(B) >0

But from (4.4), f(8) < 0, which is a contradiction.
Therefore  f(a) £ 0
Thus it follows that f(«) = 0.
[

Theorem 4.19. If a function f is continuous on [a,b] and f(a) # f(b), then it assumes
every value between f(a) and f(b)

Proof. Let A be any number between f(a) and f(b). We shall show that there exists a
number ¢ €]a, b] such that f(c) = A. Consider a function ¢ defined on [a, b] such that
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Clearly ¢(z) is continuous on [a, b].
Also

¢(a) = f(a) — A, and ¢(b) = f(b) — A

so that ¢(a) and ¢(b) are of opposite signs.
Thus the function ¢ is continuous on [a,b] and ¢(a) and ¢(b) are of opposite signs;

therefore, by the previous theorem, Jc €]a, b[ such that
¢(c)=0= flc) - A =0= f(c) =4,

O

Corollary 4.6. A function f, which is continuous on a closed interval [a,b], assumes

every value between its bounds.

Proof. Since the function f is continuous on the closed interval [a,b], therefore, it is

bounded and attains its bounds on [a, ], i.e., 3 two numbers «, 5 in [a, b] such that

fla) = M and f(5) = m,

where M and m are, respectively, the supremum and the infimum of f.

Since f is continuous on [a, b], therefore, it is continuous on [, ] or [«, 5] as the case
may be, and consequently assumes every value between f(a) and f(3).

Thus the function assumes every value between its bounds.

We may sum up in other words:

The range of a continuous function whose domain is a closed interval is as well a
closed interval. Or, in still better words:

The image of a closed interval under a continuous function (mapping) is a closed
interval.

]

4.4.3 Uniform continuity

Let f be a function defined on an interval I. Then by definition, the function is continuous

at any point xq € [ if for any € > 0, there exists a 6 > 0 such that

|f(x) — f(xo)| < &, when |z — xo| < 9.

71



For continuity at any other point d € I, for the same €, a §; > 0 would exist (not
necessarily equal to § ). There is in fact a § corresponding to each point of /. The number
0 in general depends on the selection of € and the point xy. However, if a § could be
found which depends only on € and not on the selection of the point xg, such a § would
work for the whole interval I on which f is continuous. In such a case, f is said to be
uniformly continuous on I. Thus, the notion of uniform continuity is global in character
in as much as we talk of uniform continuity only on an interval.

The notion of continuity is, however, local in character in as much as we can talk of
continuity at a point.

It may seem to a beginner that the infimum of the set consisting of § ’s corresponding
to different points of I would work for the whole of I. But the infimum may be zero. In
general, therefore, a 0 which may work for the entire interval may not exist, so that every

continuous function may not be uniformly continuous.

Definition 4.22. A function f defined on an interval I is said to be uniformly continuous

on I if to each € > 0 there exists a 6 > 0 such that

|f (x2) — f (z1)| < e, for arbitrary points x1, 2 of I
for which |x1 — x5 <6
Theorem 4.20. A function which is uniformly continuous on an interval is continuous

on that interval.

Let a function f be uniformly continuous on an interval I, so that for a given € > 0,
there corresponds a ¢ > 0 such that

|f (x1) — f (22)| < €, where 1, x5 are any two points of I for which

|$1 —{L'2| <9

Let x € I, then on taking 1 = x, we find that for ¢ > 0,36 > 0 such that

|f(z) — f(z2)] <&, when |z — xs| < 0.

Hence the function is continuous at every point x5 € I, i.e., the function f is contin-

uous on [.

Theorem 4.21. A function which is continuous on a closed interval is also uniformly

continuous on that interval.

Proof. Let a function f be continuous on a closed interval I. Let, if possible, f be not
uniformly continuous on I. Then there exists an € > 0 such that for any ¢ > 0, there are

numbers z,y € I for which
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|f(z) = f(y)| £ e, when |z —y| <4

In particular for each positive integer n, we can find real numbers x,,y, in I such
that

[f (n) = [ (yn)| £ &, when |z, —y,| <1/n

Now (x,) and (y,) being sequences in the closed interval I, they are bounded and so
each has at least one limit point, say & and 7 respectively.
As a closed interval is a closed set,

therefore
Eelnel

Further since ¢ is a limit point of (z,), there exists a convergent subsequence (x,, ) of
(xy), such that x,, — &.
Similarly, there exists a convergent subsequence (y,, ) of (y,) such that y,, — 7.

Again from above, we find that

|f($nk) - f(ynk)| % &, when |xnk - ynk| < 1/nkz < 1/k

The second inequality shows that

J = i
§=1

From the first inequality we find that in case the sequences (f (zy,,)) and (f (yn,))
converge, the limits to which they converge are different.

We thus have two sequences (x,,, ) and (y,, ) both of which converge to £ but (f (z,,))
and (f (yn,)) do not converge to the same limit.

So f is not continuous at &, for, otherwise, the two sequences (f (z,,)) and (f (yn,))
would converge to the same point f(§).

Thus we arrive at a contradiction and so the hypothesis that f is not uniformly
continuous on [ is false.

Hence f is uniformly continuous on I. O]

Theorem 4.22. If f,g : (a,b) — R are both uniformly continuous, then f + g and
f — g (as functions from (a,b) to R) are also uniformly continuous. fg: (a,b) — R is

uniformly continuous.

Theorem 4.23. Let f and g be uniformly continuous on R. Then their composition
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f og is also uniformly continuous on R.

Definition 4.23. A function f : R — R is defined to be Lipschitz if there exists a
constant K > 0 such that for all a,b € R, we have |f(a) — f(b)] < K|a — b

Theorem 4.24. A Lipschitz function is uniformly continuous. A periodic and continuous

function is uniformly continuous.

Example 4.10. Show that the function f(x) = 1/x is not uniformly continuous on |0, 1].
Solution. Clearly the function is continuous on |0, 1].
It will be uniformly continuous on the given interval if for a given € > 0,4 a § > 0,

independent of the choice of points x and c in |0, 1], such that

1 1
———| <e, when |z —c| <o
r
or
c—x
<eg whenc—d<xz<c+9 (4.5)
cx

If we take ¢ = 0, then the interval |c — 0, c + ] becomes ]0,25[. Also condition (4.5)
must hold for any x in this interval.
But

0—x
ox

i.e., if we choose x sufficiently close to zero, then condition (4.5)) is violated.

— 00 as x — 0,

Hence 1/x is not uniformly continuous on |0, 1].

Example 4.11. Show that the function f(x) = x* is uniformly continuous on [—1,1].
Solution. Let x1,x9 be any two points of [—1,1], then
f (1) = f (2a)| = |2f — 23| = |w1 — o] - |21 + 20| < &
when |x; — 9| < 5= J

(where § is independent of the choice of x1,xs ).

Thus for any e > 0,3 a 6 = %6 such that for any choice of x1,x9 in [—1,1], we have

1
|f (x1) — [ (22)] < e, when |z1 — 22| < 55:(5

Thus the function f is uniformly continuous on [—1,1].
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Inverse functions

Lemma 4.25. Let A, B be two subset of R. Let f : A — B be a bejective and strictly

monotonic function. The f~1 is strictly monotonic function, the same monotonic as f.

Proof. WLOG, we can suppose that f is strictly increasing. let y;, 72 be two elements
of B such that y; < y», then we prove that f='(y1) < f~'(y2). Since f is bejective
then there exist x1, zy such that f(x;) = yrand  f(z3) = yo. Let us proceed by contra-
positive, we suppose that z; > x5 then y; = f(x1) > f(z2)y, which is a contradiction

with Y1 < Ya. ]

Lemma 4.26. let I be an interval of R and f : I = R be a monotonic function such

that f(I) be an interval, then f is necessary continuous on I.

Proof. WLOG, we can suppose that I is not a trivial interval I = (), I = a and we
suppose that f is strictly increasing. Let a € I, if a > inf(I), we prove that lim f(z) =
T—a~
f(a) and if a < sup(I), we prove that lim+f(a:) = f(a). Indeed let a € I, if a > inf(I),
T—a

by monotonic limit theorem, there exists a real [ such that lim f(z) = [, such that
Tr—a—

I < f(a). Actually, | = sup{f(z),z € I, < a}, we aim to prove that [ = f(a). By
contrapositive, suppose that | < f(a), then there exists | < m < f(a), there exists a € I
such that oo < a. By the hypothesis that f is increasing, we get f(a) <1 < m < f(a).
f(I) is an interval, so there exists ¢ € I such that f(c) = m.

e If ¢ > a, and f is supposed to be increasing, hence f(c) > f(a) > m,

o If ¢ < a, monotonic limit gives f(¢) < f(a) < m, which is a contradiction, thus

fla) =1.
Similarly, with the right limit. O]

Lemma 4.27. let I be an interval of R and f : I = R be a continuous and injective

function. Then f is strictly monotonic.

Proof. By contrapositive principal, we suppose that f isn’t strictly monotone, thus
e dr,yel:x<yand f(x) > f(y)
e 'y el 2 >y and f(2') < f(v)

The segments [z, 2'], [y,y'] are defined by [z, 2] = {tx + (1 —t)2’,t € [0,]} and [y, '] =
{ty+ (1 —t)y’,t € [0,1]}. Then let us define the following functions:

a:[0,] —mR:t—=te+(1—0t)2', [:[0,1]] —R:t—=ty+(1—1)y.
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a(t)andp(t) belong to the interval I. Now we consider the function defined by
¢:[0,1] — R:t = flaft) — f(B()).

(1) o, B, f are continuous so ¢,

(2) ¢(0) = f(x)— f(y) > 0and ¢(1) = f(2')— f(v') < 0. The mean theorem value implies
that there exists ty €]0,1[ such that ¢(ty) = 0, which means that f(«a(ty) = f(5(to)-
Contradiction ( f is injective). O

The inverse function theorem for strictly monotonic function

Theorem 4.28. let I be an interval of R and f: I — R be a function. Set J = f(I).
Then two of the following properties implie the third one.

1- J is an interval and f: I — J is a bejection function.
2- [ is strictly monotonic on I.
3- f is continuous on I.

more; if 1, 2 and 3 are satisfied, then the inverse function f=' :J — I is continuous,

strictly monotonic, the same as f.
Proof. o If 1 and 2 are satisfied then f is continuous (Lemma (4.26)).
o If 1 and 3 are satisfied then f is strictly monotonic (Lemma (4.27)).

 If2and 3 are satisfied then J is an interval (MTV theorem). f is strictly monotonic,
thus f is injective and by the way bejective.

If 1, 2 and 3 are satisfied the by (Lemma (4.25)), f~* : J — [ is strictly monotonic,

the same as f. f~!:J — I realize a bejection from J on I, so f~! satisfies 1 and 2,

hence f~! is continuous. O

The fact that the domain of f must be an interval is a necessary condition, see for

example the following.

Example 4.12. Let g : [0,1]U]2,3] — [0, 2] defined by

r,if 0 <z <1

g(x) = _
r—1,if2<z<3

The inverse is
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y, if0<y <1
y+1,ifl<y<?2

and it is not continuous because of a jump at y = 1.

Theorem 4.29. Let f be a continuous and increasing function on the interval [a,b]. Let
a= f(a), and 8 = f(b). Then

(1) The image of [a,b] by f is equal to the interval o, B] (f (la,b]) = [, 5])

(2) There exists an inverse function x = g(y) of f continuous and increasing on

[, 5]

Remark 4.7. The inverse of a decreasing and continuous function f on [a,b] is a de-
creasing and continuous function on [a, 5], where o = f (a), B = f (b). One can consider

the function —f.
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CHAPTER

DIFFERENTIABLE FUNCTIONS

We begin with the definition of the derivative of a function.

Definition 5.1. Let I C R be an interval and let xo € I. We say that f : I — R is

differentiable at xo or has a derivative at xq if

lim f(x) — f(xo)

T—T0 xr — xo
exists. We say that [ is differentiable on I if [ is differentiable at every point in I.
By definition, f has a derivative at xq if there exists a number L € R such that for

every € > 0 there exists 6 > 0 such that if |x — xo| < 0 then

f@) = fwo) _,

T — 2o

< E.

Derivative function

If f is differentiable at g, we will denote lim,_,,, [@)=f@o) 1, 7 (xo), that is,

T—x0

- f(x) = f(xo)

/ _

f (.To) o xligﬁlo T — Xy ‘

The rule that sends z( to the number f'(z() defines a function on a possibly smaller

subset J C I. The function f’: J — R is called the derivative of f.
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Example 5.1. Let f(z) = 1/x for x € (0,00). Prove that f'(r) = — 2%

2

Example 5.2. Let f(z) = sin(x) for x € R. Prove that f'(x) = cos(z).

Solution

Recall that

sin(x) — sin(xg) = 2sin (m _2I0> cos <x —;x())

and that lim, .o 32&) = 1. Therefore,

T

lim sin(z) — sin(zo) _ i 2sin (£520) cos (£420)
T—rITQ €xr — xo T—rTQ €xr — l’o

. T—x0
= lim <sm (_ 2 ))cos (HH_%)
T—T0 T—To 2

2

=1 cos(xg) = cos(zp).
Hence f’(x¢) = cos(zy) for all zy and thus f'(z) = cos(z).

Example 5.3. Prove by definition that f(x) = 357 is differentiable on R.

Solution

f(z) — f(x0) . H%_l—figsg
T — Xo T — To
(1 +af) —xo (1 +2?)
(1+22) (1+23) (x — o)
1— 2oz
(14 23) (L +22)

Now

g L0 = Jaw) _ 13
TITO L — X (1+22)

Hence, f'(xq) exists for all zg € R and the derivative function of f is

1 — 2?2
(1+x2)2'

Example 5.4. Prove that f'(z) = « if f(z) = ax + .

fla) =

Solution

f@)=f@o) _

We have that f(z) — f(20) = az — axg = a(x — x9). Therefore, lim,,,, =5 =

This proves that f'(z) = « for all z € R.
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Example 5.5. Compute the derivative function of f(x) = |x| for x € R.

Solution If x > 0 then f(z) = 2z and thus f'(x) = 1 for x > 0. If 2 < 0 then
f(z) = —x and therefore f'(x) = —1 for x < 0. Now consider xy = 0. We have that

Fla) = o) ol

T — X x

We claim that the limit limxﬁo% does not exist and thus f’(0) does not exist.
To see this, consider z, = 1/n. Then (z,) — 0 and f(z,) = 1 for all n. On
the other hand, consider y, = —1/n. Then (y,) — 0 and f(y,) = —1. Hence,
limy, o0 f () # lim, oo f (Yn), and thus the claim holds by the Sequential criterion
for limits. The derivative function f’ of f is therefore defined on A = R\{0} and is given
by

, 1, x>0
fi(x) =
-1, =>0.
Hence, even though f is continuous at every point in its domain R, it is not differen-
tiable at every point in its domain. In other words, continuity is not a sufficient condition

for differentiability.

Geometric interpretation

Let zp € R and suppose that the function is differentiable at zo. Let T4, £(z,)) be the
tangent line to the graph of f at the point (xg, f (x0)), and let (h,) be a sequence of
real numbers decreasing to 0 . Let D,, be the straight line joining the points (zo, f (x0))
and (zo + hp, f (zo + hy)). Therefore for all n € N, y = A, (z — x¢) + f (20), where
A, = w, is the equation of D,. When n — oo, the straight lines D,
tend to the tangent line T(y, (o)) and the slopes A, — f'(x9). We conclude that
y = f"(x0) (x — x0) + f (w0) is the equation of the tangent line T4, f(zy))- In other words,

[ (%) is the slope of the tangent line T(4, f(z0))-

Right-hand derivative, left-hand derivative

Let f : I — R be function and suppose that there exists 6 > 0 : |xg — d, 0] C I.

Definition 5.2. If lim M
0

Tz r —
tiable at xo, or has a left hand derivative at xo. Noted by f'(xo —0) (f_ (20))
Let f: I+~ R be function and suppose that there exists § > 0 : [xg,zo + 0,[ C I.

exists (finite), we say that f is left hand differen-
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Definition 5.3. IF lim 1. %) — 7 (¥0)

x%xa' T — T

entiable at xo, or has a right hand derivative at xo. Noted by f' (zo + 0) (fjr (xo)) .

exists (finite), we say that f is right hand differ-

Remark 5.1. A function f is differentiable at xo if and only if both the right-hand deriva-

tive and left-hand derivative at xq exist and both of these derivatives are equal.
Example 5.6. [ : x — |z| defined on R is not differentiable at 0.

Theorem 5.1. Suppose that f: I — R is differentiable at xq. Then f is continuous at

Zo.

Proof. To prove that f is continuous at zq we must show that lim, ., f(z) =
f@)—f(zo) _ 7(

o xo) exists, and clearly lim, ., (z— xo) =

f(zo). By assumption lim,_,,,

0. Hence we can apply the Limits laws and compute

lim f(z) = lim (f(z) — f(zo) + f(x0))

C - )
= xlg?o <(:E_lb)($ - ZL‘Q) + f((L‘()))
= ["(z0) - 0+ f(20)
= f(z0)

and the proof is complete.
m

Theorem 5.2. Let f: 1 — R and g : I — R be differentiable at xo € I. The following
hold:

(i) If a € R then (af) is differentiable and (a.f) (xo) = af’ (o).

(it) (f + g) is differentiable at xo and (f + g)'(xo) = f'(x0) + ¢ (z0).

(iii) fg is differentiable at xo and (fg)' (xo) = f'(x0)g(xo) + f(x0)g (z0).

(iv) If g(xo) # 0 then (f/g) is differentiable at xo and

(g) (z0) = f'(0)g(x0) — f(20)g' (o)

9(x0)?
Proof. Parts (i) and (ii) are straightforward. We will prove only (iii) and (iv). For (iii),

we have that

f(x)g(x) — f(wo)g(xzo)  f(x)g(x) — f(20)g(2) + f(20)9(2) — f(20)g(70)

T — X T — 2o

= Wg(x) + f(xo)w.
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Now lim, ., g(z) = g(zo) because g is differentiable at xy. Therefore,

i 1 @)9(@) = fxo)g(zo) _ . f(2) —f(:co)g(x) + lim f(xo)g(:v) — 9(xo)

T—x0 T — X T—ITQ T — X T—TQ T — X

= f'(w0)g(wo) + f(x0)g' (o).

To prove part (iv), since g(zg) # 0, then there exist a d-neighborhood
J = (xg — 9,29 + 0) such that g(x) # 0 for all z € J. If z € J then

8 =25 F(@)g(wo) — g(x) f(o)

T—1x0 g(x)g(zo)(z — 0)
_ J@)g(xo) — f(wo)g(20) + f(w0)g(w0) — g(z)f(20)

B g(x)g(zo)(x — 0)
F(@)g(zo)—f(xo)g(zo) _ f(z0)g(®)—f(z0)g(z0)

T—XQ T—xQ

9(x)g(xo)

Since g(xg) # 0, it follows that

f@) _ fzo)
lim g(x) g(xo) _ f'(xo)g(xo) - f(xo)g’(mo)
LT T = T 9(20)?

and the proof is complete.

We now move to the Chain Rule.

Theorem 5.3. Let f: I — R and g : J — R be functions such that f(I) C J and let
xg € I. If f'(xo) exists and ¢'(f(xo)) exists then (g o f) (xo) exists and (g o f)'(xo) =
g'(f (o)) f' (o).

Proof. Suppose that there exists a neighborhood of xy where f(z) # f(zo). Otherwise,
the composite function (g o f)(z) is constant in a neighborhood of zy, and then clearly
differentiable at xy. Consider the function h : J — R defined by

—gtso)) -y £ f ()
g(f(@)),  y=F(zo).

=

h(y) =
Now

y—f(zo) y—f(zo) Y — Zo

= g'(f(x0))’
= h(f(wo))-
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Hence, h is differentiable at f(xq) and therefore h is at f(xg). Now,

o) = o(Fe0)) _ ) S0 = Flan)
and therefore s o
i 2D o000 350 )= Sl
U Leores
= §/(f(20)f (x0)

Therefore, (go f) (xo) = ¢'(f(x0))f'(zo) as claimed.

Example 5.7. Compute f'(x) if

Fo) = a?sin (1), x#0
0, x=0.

Where is f'(x) continuous?

Solution

When = # 0, f(z) is the composition and product of differentiable functions at z, and
therefore f is differentiable at = # 0. For instance, on A = R\{0}, the functions

1/z,sin(z) and 22 are differentiable at every z € A. Hence, if z # 0 we have that

o -aen (1) o 2)

Consider now zo = 0. If f/(0) exists it is equal to

o @) = fwo) | asin (3)
r—0 r — Xo xz—0 x

! ! ( 1 >
=limzsin| — ).
xz—0 x

Using the Squeeze Theorem, we deduce that f'(0) = 0. Therefore,

21 sin (l) — cos (l) , x#0

@) = ST
0, = 0.
From the above formula obtained for f'(x), we observe that when x # 0 f’ is continu-

ous since it is the product/difference/composition of continuous functions. To determine
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continuity of f’ at = 0 consider lim,_,o f’(x). Consider the sequence z, = %, which
2
nw

for all n and therefore f’(x,) = —cos(nw) = (—=1)"*'. The sequence f’(z,) does not

clearly converges to xyp = 0. Now, f’(z,) = -=sin(nn) — cos(nw). Now, sin(nr) = 0

converge and therefore lim,_,o f'(z) does not exist. Thus, f’ is not continuous at x = 0.

Example 5.8. Compute f'(x) if

Where is f'(x) continuous?

Solution

When z # 0, f(x) is the composition and product of differentiable functions, and therefore
[ is differentiable at x # 0. For instance, on A = R\{0}, the functions 1/z,sin(x) and

23 are differentiable on A. Hence, if x # 0 we have that

f'(z) = 32*sin <;) — 2 cos (;) .

Consider now zp = 0. If f/(0) exists it is equal to

: 1
P @) = flag) . atsin ()
z—0 T — X z—0 €T

1
= lim z? sin <>
z—0 €T

and using the Squeeze Theorem we deduce that f'(0) = 0. Therefore,

3x%sin (£) —xcos (L), z#0
fi(x) =
0, xz=0.
When = # 0, f’ is continuous since it is the product/difference/composition of con-

tinuous functions. To determine continuity of f' at g = 0 we consider the limit
1

lim, .o f'(z). Now lim,_,o3z?sin (5) = 0 using the Squeeze Theorem, and similarly
lim,_,q  cos (%) = 0 using the Squeeze Theorem. Therefore, lim, ,o f'(x) exists and is
equal to 0, which is equal to f/(0). Hence, f’ is continuous at x = 0, and thus continuous

everywhere.

Example 5.9. Consider the function
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a?sin (1), z € Q\{0}
f(x) = z?cos (1), 2¢Q
0, xr=

Show that f'(0) = 0.

5.0.1 Some theorems

Definition 5.4. Let f: I — R be a function and let xq € I.

(i) We say that f has a relative maximum at xy if there exists 6 > 0 such that
f(z) < f(xg) for all x € (xg — 6,29+ 0).

(ii) We say that f has a relative minimum at xq if there exists 0 such that f(zo) < f(x)
for all x € (xg — 6,20 + 0).

A point g € I is called a critical point of f : I — R if f'(xg) = 0. The next theorem
says that a relative mazimum/minimum of a differentiable function can only occur at a

critical point.

Theorem 5.4. ( Pierre Fermat: 1601-1665) Let f : I — R be a function and let
xo be an interior point of I. Suppose that f has a relative maximum (or minimum) at
xo. If f is differentiable at xo then xq is a critical point of f, that is, f'(x) = 0.

Proof. Suppose that f has a relative maximum at zq; the relative minimum case is similar.
Then for x # x¢, it holds that f(x) — f(z¢) <0 for x € (xo — d, 29 + ) and some 0 > 0.
Consider the function h : (zg — d, 29 + 6) — R defined by

F@) i) o g o
h(x): T—x0 ) 7é 0

f’(%); T = o

Then the function h is continuous at zo = 0 because lim,_,,, h(x) = h(z). Now for
x € A = (x9,79 + 0) it holds that h(z) < 0 and therefore f'(zg) = lim, ., h(z) < 0.
Similarly, for z € B = (x¢ — 0, x¢) it holds that h(z) > 0 and therefore 0 < f’(z(). Thus
f'(x9) = 0. O

Corollary 5.1. If f : [ — R has a relative mazimum (or minimum) at xo then either

f'(xg) =0 or f'(xg) does not exist.

Example 5.10. The function f(z) = |z| has a relative minimum at x = 0, however, f

is not differentiable at x = 0.
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Theorem 5.5. (Michele Rolle: 1652-1719) Let [ : [a,b] — R be continuous on
la,b] and differentiable on la,b|. If f(a) = f(b) then there exists xy € (a,b) such that

f'(xg) = 0.

Proof. Since f is continuous on [a,b] it achieves its maximum and minimum at some
point z* and x., respectively, that is f (z.) < f(z) < f(2*) for all x € [a,b]. If f is
constant then f/'(z) =0 for all = € (a,b). If f is not constant then f (z.) < f (z*). Since

f(a) = f(b) it follows that at least one of z, and x* is not contained in {a, b}, and hence

there exists zo € {x., x*} such that f'(x¢) = 0. O

Remark 5.2. Rolle remains true even when the interval is open, provided that lim+f (x) =
Tr—a

lim f (z).

T—b~

We now state and prove the main result of this section.

Theorem 5.6. (Mean Value theorem: Lagrange 1736-1813) Let f : [a,b] - R

be continuous on [a,b] and differentiable on (a,b). Then there exists xq € (a,b) such that
Flxg) = f(bl))*f(a)'

Proof. If f(a) = f(b) then the result follows from Rolle’s Theorem (f'(zo) =0 for
some xg € (a,b)). Let h: [a,b] — R be the line from (a, f(a)) to (b, f(b), that is,

f(b) = f(a)

b—a) 7Y

and define the function

for € [a,b]. Then g(a) = f(a) — f(a) = 0 and g(b) = f(b) — f(b) = 0, and

thus g(a) = g(b). Clearly, g is continuous on [a,b] and differentiable on (a,b), and it is

fO)=f(

straightforward to verify that ¢'(z) = f'(z) — 9 By Rolle’s Theorem, there exists

xo € (a,b) such that ¢'(z¢) = 0, and therefore f'(zq) = %

Theorem 5.7. Extended mean value theorem: Cauchy theorem 1789-1857)

Let f,g be two continuous functions on [a,b] and differentiables on la,b]. If ¢’ does
) - fl@)  f ()
g() —g(a) g (o)

not vanish on |a,b[, then there exists a point xy € |a,b| such that

Proof. Consider the function

Wx) = (f(z) = fa))(g(b) — g(a)) = (F(b) = f(a))(g(x) — g(a)).

This is continuous on [a, b] and differentiable on (a,b), with
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W(z) = f'(x)(g(b) — g(a)) — ¢'()(f(b) — f(a)).

Note that h(a) = 0 = h(b). By Rolle’s Theorem, there a spot xq where h/(zg) = 0. O

Remark 5.3. Lagrange theorem is a special case of Cauchy theorem: ¢g(x) = x,x €
[ a,b].

22
Example 5.11. Prove that Vx >0:e* > 1+ x + TR

2
Proof. Cauchy theorem applied with f (z) =e*, g(u) =1+ u+ %, u € [0,z]. Then

6:):_60 e%o x0o
dzg €10, 2] : . =1x but T > 1,Vzy > 0.
x x
l+a+——1 0 0
2
So
e’ —1 . z?
s >1=e" >1+x+ —.
+$ 2
$ JE—
2

L’Hospital’s Rule And Indeterminate Forms

L’Hospital’s Rule (Guillaume L'Hospital (1661-1704)) tells us that if we have an indeter-

minate form % or 22, all we need to do is differentiate the numerator and differentiate the

denominator and then take the limit.

Theorem 5.8. Let f(x) and g(x) be continuous functions on an interval containing
x = a, with f(a) = g(a) = 0. Suppose that f and g are differentiable, and that f' and ¢
are continuous. Finally, suppose that g'(a) # 0. Then

f@) . f) @

lim —= = lim = .
e=a g(x)  evag(z)  g'(a)

Also,
@) P
mlar(% g(x) zlarzg g (z)
and
lim @ = lim f'(z)

T—a~ g(LC) T—a~ g/(l')
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Proof. Since that f(a) = g(a) = 0 and ¢'(a) # 0. Then, for any z, f(x) = f(z) — f(a)
and g(x) = g(x) — g(a). But then,

since, by definition, f'(a) = lim,_,, f@=1@) 4nq g'(a) = lim,_,, %. Since f’ and

r—a

g’ are assumed to be continuous, this is also

lin, o f2) ()

limga g'(x) 220 g ()

This version is easy to prove, and is good enough to compute limits like

in(2
lim Sln( x)
=0 1+ 12

However, it isn’t good enough to compute limits like

lim 1 — cos(2x)
z—0 xr2
since in that case ¢’(0) = 0. To solve problems like the last one, we need the following

version.

Theorem 5.9. Suppose that f and g are continuous on a closed interval [a,b], and are
differentiable on the open interval (a,b). Suppose that ¢'(z) is never zero on (a,b), and
that lim, .+ f'(z)/g'(x) exists, and that lim, ..+ f(x) = lim, .+ g(x) = 0. Then
/
lim /() = lim fz)

r—a™t g(l‘) r—at g’(:v) '

Proof. By assumption, f and g are differentiable to the right of a, and the limits of f and
g as x — aTare zero. Define f(a) to be zero, and likewise define g(a) = 0. Since these
values agree with the limits, f and g are continuous on some half-open interval [a, b) and
differentiable on (a,b).

For any = € (a,b), we have that f and ¢ are differentiable on (a, ) and continuous on
la, z]. By the extended MVT, there is a point ¢ between a and x such that f'(c)g(x) =
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f'(x)g(c). In other words, f'(c)/¢'(c) = f(x)/g(x). Also, as = approaches a,c also
approaches a, since c is somewhere between x and a. But then

o F@ O

e—at g(x) T zoat g'(c)  e=at g'(c)

That last expression is the same as lim,_,.+ f'(x)/¢' (). O

Note that this theorem doesn’t require anything about ¢’(a), just about how ¢’ behaves
to the right of a. An analogous theorem applies to the limit as + — a~(and requires f
and g and f’ and ¢’ to be defined on an interval that ends at a, rather than one that
starts at a ). You can combine the two to get a theorem about an overall limit as z — a.

The conclusion of L’Hépital’s Rule relates one limit (of f/¢g ) to another limit (of
f'/g"), and not to the value of f’(a)/¢'(a). This is what allows the theorem to be used
recursively to solve problems.

The inverse is not always true, see the following

2 L 2 L
x®sin — x®sin —
Example 5.12. We have lim———= = lim L — limx sin — = 0,
ac—>0/ sIn x z—0 x z—0 €T
1 1 1
(152 Sin x) 2z sin — — cos —
despite that lim —————— = lim L L does not exist.
=0 (sinx) 20 cos x

!
G is an indeterminate form such % and we suppose that f' (x) and

g (x) / )
g (x) satisfy L’Hopital theorem hypothesis, then limf (z) = limf (z) = limf (z)

x—)ag (Q;) r—a g/ (3;) r—a g” (3;) ’

Remark 5.4. If

Theorem 5.10. Eztended L’Hopital’s Rule Suppose that f and g are two functions
well defined and differentiable on a neighbourhood of a point a, may be except at a and

assume that lim f () = limg (x) = 00, and that g (x) # 0 et ¢’ (x) # 0 on the candidate
/' (x) f(x) f) (@)

neighbourhood. So, if lim exists, then lim exists and lim = lim :
T—a g/ (m) x—>ag (x) ac—)ag (aj) T—a g/ (1‘)

1
Remark 5.5. If a = oo the transformation x = i guide us to the case a = 0,

G GG ()

=lim———— = lim

:cl—>nolog (7) t—>og (1) {0 ( (1))/ t—)O_lg, (1) o :cl—>rgog/ (z)
[ I\ ¢ 27 \¢
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Theorem 5.11. Let [ : [a,b] — R be continuous on [a,b] and differentiable on (a,b). If
f'(x) =0 for all x € (a,b) then f is constant on |a,b].

Proof. Let y € (a,b]. Now f restricted to [a,y] satisfies all the assumptions needed in
the Mean Value Theorem. Therefore, there exists xy € (a,y) such that f'(zg) = w

But f'(xo) = 0 and thus f(y) = f(a). This holds for all y € (a,b] and thus f is constant
on [a,b] O

Corollary 5.2. If f, g : [a,b] — R are continuous and differentiable on (a,b) and f'(x) =
g'(z) for all x € (a,b) then f(x) = g(x) + C for some constant C.

The sign of the derivative f’ determines where f is increasing or decreasing.

Theorem 5.12. Suppose that f: I — R is differentiable.
(i) Then f is increasing if and only if f'(z) > 0 for all x € I.
(ii) Then f is decreasing if and only if f'(x) <0 for all x € I.

Proof. Suppose that f is increasing. Then for all x,zy € [ with x # z( it holds that
Ha)-f(zo) (32:5: ((fo) > 0 and therefore f'(zg) = lim, 4, %ﬁo@o) > 0. Hence, this proves that

f'(x) >0forallxel.
Now suppose that f’(x) > 0 for all x € I. Suppose that x < y. Then by the Mean

Value Theorem, there exists zop € (x,y) such that f'(zq) = % Therefore, since
f'(z) > 0 it follows that f(y) — f(x) > 0.
Part (ii) is proved similarly. O

Derivative of inverse functions

Theorem 5.13. Let f : Ja,b] - R, —o00 < a < b < +0o0 be a function that is both
invertible and differentiable. Let f (Ja,b]) = Je,d[ (=00 < c < d < +00) et f1:]e,d] —
la, b, the inverse function of f. If f is differentiable at x¢ such that f'(x¢) # 0, then
f~1 is differentiable at f (zo) and satisfies (f~1) (f (z0)) = Flz0)’

Proof. Use composition derivative formula. m

5.1 Higher order derivatives

Let f :]a,b] — R be a differentiable function on |a,b[. Let g = f’ : |a,b] — R be the
derivative function by setting g (z) = f' (z),Vz € ]a, b].
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Definition 5.5. At xq € |a, b| the derivative of the derivative of a function f if it exists,

is called the second derivative of that function and is denoted by one of the symbols
2
f/l (:EO)

T (@) i

If the derivative of n € N exists, then, we denote it by f™ (xo) or %f (o) and if for
all v € la,b[, f* (z) exists, then the derivative of order n + 1 is defined by f"V) (z) =
(f(”) (IL’))/, if it exists.

Example 5.13. Vn € N,V € R,

(sinz)™ = sin <$ + ng) , (cos z)™ = cos (x + n%)

By induction we have
For n =1, one has (sinz) = cosx = sin (m + g), is true.
Suppose that it is true for n.
/
So (sin x)("H) = (sin(”) x)l (sin (x + n%)) = COoS (m + ng) = sin (a: + ng + g) =
: T
sin (m +(n+1) 5)

which is true too.

Technical fact

If y = f(z) is a function of time that describes the position of a moving object, then:
1. The first derivative represents the velocity of the object.
2. The second derivative represents the acceleration of the object.
3. The third derivative represents the jerk of the object.

Definition 5.6. Let A C R. Then f € C™ (A), (n € N) <= Va € A, f™ (2)(n € N)
exists and f™ € C (A) (n € N). f is said to be n times continuously differentiable.

Definition 5.7. C) (4) = () C™ (A)
n=1
feC®(A) < VneN: fecCOW(A), fis said to be infinitely differentiable.

Example 5.14. Functions sinz,cosz,e®,x € R belong to O (R).

Theorem 5.14. ( Leibniz formula) Let {f, g} C C™ (Ja,b]) for n € N. Then fg €
C™ (Ja,b]), and we have

(fg)™ =" Ck pgn=h),
k=0

Proof. By induction. O]
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Example 5.15. Calculate (z? sin 235)(10) . One has f (z) = 2%, g (z) = sin 2z and f' (z) =
2z, f"(z)=2, f"(x)=....= fx)=0

J(z) = 2sin (29: + g) — 2cos2z, ¢" (z) = 2*sin <2x + 2%) — 2% (—sin2z), ...,

g (z) = 2"sin (2:1: + 10%) — 21%in (22 + 57) = —2'0sin 2z

So
(a?sin20)"” = fOGA0 4l g 4 C2f1g® 4 % f1g D
10.9
= —2'%2sin 2z + 10 (22) 2” sin (23: + 9%) + - sin (23; + 8%)

= —210226in 22 + 29102 cos 2z + 8%.10.9 sin 2z
45
= 90 (x2 sin 2x — 10z cos 2z — 5 sin Zx) .

Local and absolute extrema
An extremum (or extreme value) of a function is a point at which a maximum or min-
imum value of the function is obtained in some interval. A local extremum (or relative
extremum) of a function is the point at which a maximum or minimum value of the
function in some open interval containing the point is obtained.

An absolute extremum (or global extremum) of a function in a given interval is the
point at which a maximum or minimum value of the function is obtained. Frequently,
the interval given is the function’s domain, and the absolute extremum is the point

corresponding to the maximum or minimum value of the entire function.

Definition 5.8. Let xqg € I and let f: I — R be a function, where I is a real interval.

We say that f reaches at xq¢ a local maximum if there existsn > 0 such that [z — 0, xo + 1] C
I and for all x € [xg —n, xo + 1] we have f(x) < f(xg).

We say that f reaches at xq a local minimum if there exists n > 0 such that [xg — 1, zo + 1] C
I and for all x € [xg — 1, x0 + 1] we have f(x) > f(xg). We say that f reaches at xy a

local extremal value if f reaches at xo a local mazimum or minimum.

Theorem 5.15. If f : I — R reaches at zy € I a local extremal value and f is
differentiable at o, then f’(zo) = 0.

Proof. 1f f reaches at xy a local maximum, then

) = 1 (a7) = i PO <

and
f'(xg) = f (3;0—) — lim M > ()

Tr—xQ xr — ':EO
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Hence f'(x¢) = 0. O

Remark 5.6. The reciprocal is false since the function f(x) = x* has f'(0) = 0 but it

does not reach an extremal value at 0.

Theorem 5.16. Suppose that xy is a stationary (critical) point of a given function
f(i,e: f' () =0) and suppose that the second derivative of f is continuous in some
neighbourhood of xg.

If " (z0) < 0, then f admits a local mazimum local at xo;

If f" (x¢) > 0, then f admits a local minimum local at x.

Theorem 5.17. Suppose that f'(vo) = f"(x0) = ... = f™ (20) = 0 and suppose
that f"F (2) # 0 is continuous in some neighbourhood of xo. If n + 1 is even and
fOHY (24) < 0, then f admits a local mazimum at xo; If n-+1 is even and f™+Y (24) > 0,
then f admits a local minimum at xo; If n + 1 is odd, then f does not have any local

extrema at xg.

Example 5.16. Let be the function f (x) =e*+e *+2cosz, f' () =e* —e * —2sinz,

remark that v = 0 is a stationary point. Then
["(x)=¢"+e"—2cosz, f"(0) =0

["(x)=e"—e "+ 2sinz, [ (0) =0
fW(@)=e"+e®+2cosz, [P (0)=4>0(n+1)=4
so x = 0 is a local minimum point.
The following theorem is stated under weak conditions then the above one.

Theorem 5.18. Suppose that the function f is continuous on an interval |xg — 0, xo + 0|
(0 > 0) and differentiable on |xy — §,x0[ and on |xg, xo + 0[. Assume that

f (@) =0, (resp., < 0)  onlzg — b0 (3)

F' (@) <O, (resp,>0) onlag,zo+3l  (4)

Then the function f admits a local mazimum (resp. local minimum) at xo. Remark

that the existence of f' (x0) isn't mandatory.

Example 5.17. Find the extrema points of the function f (z) = x5 (1 — z)
1
——x
First we calculate derivative: f'(x) = — 33—
/2?2 (1 —x)
1
we can easily check that r1 = 3 is a stationary point. The derivative at points ro = 0

1
et v3 = 1 does not exist. Let 0 < § < 3’ then:
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f’<;—5> >0, f’<;+5> <0

f (=8)>0, f(5)>0

ff1—=6)<0, f[(1+0)>0

So for x; = ; the function admits a maximum, for xo = 0, there is no extrema. For

x3 =1 the function admits a minimum.

Bounds of a function

Suppose we have to find the maximum (resp, minimum) of a continuous function on an
interval [a, b] three cases only are possible:

l)zg=a 2)xo=b  3)x€a,b

If g € ]a,b], then the function f admits a local extrema at xg, that is a critical point
(either stationary or a point such that the derivative does not exist).

If {x1,...,2,}, is a finite set, then

max f (r) = max{f (a), f(b),f(x1),..., f(zn)}

z€[a,b]

min f(r) =min{f (a), f(0), f(x1), ..., f (zn)}

z€[a,b]

3
Example 5.18. Find local extrema of the function f (z) = 23 — 3z + 3 on [—3, 2}
We have f' (z) =32> —3=0& 21 =—1,29 =1
15

Since f(~1) =5, f() =1, f(-8) =15, 1 () =
then max f(z)=>5 et min_ f(x) =—15.

ve[-3,3] ze[-3,3]
Convexity of a curve, point of inflection
There are different types of functions. They are classified according to the categories. One
such category is the nature of the graph. Depending upon the nature of the graph, the
functions can be divided into two types namely, convex Function and concave Function
Both the concavity and convexity can occur in a function once or more than once. The
point where the function is neither concave nor convex is known as inflection point or the

point of inflection.

Definition 5.9. If a curve opens in an upward direction or it bends up to make a shape
like a cup, it is said to be concave up or convex down. If a curve bends down or resembles a
cap, it is known as concave down or convex up. In other words, the tangent lies underneath

the curve if the slope of the tangent increases by the increase in an independent variable.

Remark 5.7. If [ is a differentiable function, then when ' > 0, we have a portion of
the graph where the gradient is increasing, so the graph is convex at this section. When
" <0, we have a portion of the graph where the gradient is decreasing, so the graph is

concave at this section. .
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Definition 5.10. The point of inflection or inflection point is a point in which the con-
cavity of the function changes. It means that the function changes from concave down to
concave up or vice versa. In other words, the point in which the rate of change of slope
from increasing to decreasing manner or vice versa is known as an inflection point. Those

points are certainly not local mazxima or minima, but they are stationary points too.

Example 5.19. Let the curve defined by y = 1+ /.
2

Check the concavity (convezity ) at points A(—1,0), B(1,2). On a y" () = —§a7_ ,

2
y'(—1) = 9 >0, y" (1) <0, so at point A, the curve is concave up or convex down, and

at the point B, it is concave down or convex up.

wlot

Corollary 5.3. If zg is a point of inflection of a curve y = f(x) and if the second

derivative " exists at xo, then one has necessary f" (xy) = 0.

Theorem 5.19. If f is such that the derivative f" is continuous at xo and f" (xo) =0

with f" (xo) # 0, then the curve y = f (x) admits a point of inflection at x.

Example 5.20. Consider y = 3 —3x? — 92 +9. We have y = 32> —6x -9, 3y’ = 62 — 6.
Then y" (1) =0 and y"" (1) =6 # 0. So x =1 is an inflection point.

Remark 5.8. A curve can admit an inflection point at a given point xo despite that

f" (x0) does not exist.

Theorem 5.20. Let f be a function such that: f"(xo) = ... = ™) (zg) = 0, fOFD s
continuous at xo and f™Y (zy) # 0, if n is odd, then the curve y = f () is convex up
or conver down according to f™*Y (x4) < 0 or f™+Y (z9) > 0. If n is even, then x is a

point of inflection.

Example 5.21. Let y = 2°. we have y' (z) = 5z,

y" = 2023, y" (0)=0
" () = 602 Y (0) =0
y@ (z) = 60.2z, y@ (0) =0
y®) () = 120, y® (0) = 120 # 0

n =4 even, then xo = 0 is an inflection point.

Asymptote of a curve An asymptote is a straight line that constantly approaches a
given curve but does not meet at any infinite distance. In other words, Asymptote is a line
that a curve approaches as it moves towards infinity. The curves visit these asymptotes

but never overtake them.
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Definition 5.11. The line x = a is said to be a vertical asymptote of a continuous curve

y = f (z) if at least one the two limits lim f(x), lim f(x) is infinite.
r—at T—a~

If a curve y = f(x) is defined for x > A (resp.x < A), then y = ax + b is said to
be oblique asymptote of the curve y = f (x) for v+ — 4oo(resp.x — —o0) if f(x) =
ax + b+ «a(z) where xirgooa (x) = 0(resp.x — +00) (in other words |f (x) — ax — b| is
infinitely small with respect to pour x — +oo(resp.x — —oa)).

A horizontal asymptote is a horizontal line, y = a, that has the property that either:

lim f(x) = a or xgnjoof(x) = a. This means, that as x approaches positive or

r—>+00
negative infinity, the function tends to a constant value a.

Example 5.22. Consider y = ot The line x = 2 s a vertical asymptote because
lim = 400, lim = —00.
z—2+t T — 2 T—2- L —
Example 5.23. Let y — " — 0. Since f(x) = 7+ 2+ bl 0
Xam . . = = U. = 11m =
ample ety ——1 ince f(x x x—lez—wox— ,
>+

then the line y = x + 2 is an oblique asymptote of the curve y = for x — +o00
x

—1
and for (r — —o0).

Theorem 5.21. Lety = f () be a given curve. y = f (x) admits an oblique asymptote
of the form y = ax + b for v — +o00 (x — —o0) if and only if the following limits

@ _
Jim P = lin, [ (o) - ad] =

exist.

Remark 5.9. The existence of the limits

@ _
i P = lim [f(2) —es] = ¢

is necessary. Indeed for the curve
= > 1 ~— =0 = 1 — =
y = vz (x>=0) we have  Am = 0 =a and L im [V — 0x] = +oo, which
means b = 400, so this curve does not have asymptote.

Example 5.24. Let the curve defined by y = ved

1) Vertical asymptote
2 2
. BN .eY _ 1 .eY
lim zez? = lim — = 400, lim zez? = lim — = —o0.
z—07F y—>r+00 z—0~ y—r—o0 gy
then x =0 s a vertical asymptote.

2) oblique asymptote
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1

. ea? . a
a= lim x = lim xezz =1,
r—rtoo g r—>to0
. a1 . 1
b= lim [xezQ—x}: lim |z|{1+—)—xz| =0.
r—rFo0 r—rFo0 2

thus b= 0. So y = x is an oblique asymptote of the considered curve.

5.2 Convex Functions

5.2.1 Introduction

Convexity is the study of convex sets and functions, it constitutes a branch of geometry
and analysis that unites phenomena that are at first sight totally dissimilar. It intervenes
at various levels in very varied branches of mathematics (number theory, combinatorial
problems, optimization, functional analysis, etc.). In analysis, the property of convexity
is relatively sought after, since as we will see in the following, it offers a good number of

nice properties on the function.

Definition 5.12. A function f : I — R is said to be convexr when: ¥(x1,x9) € I,V €
[0,1]

fxr+ (1= A)za) < Af(21) + (1= A) f(2)

this means that for all 1 and x5 of I, the line segment connecting the points (x1, f(x1))

and (zs, f(z2)) are located above the curve representing f.

Definition 5.13. f will be said to be concave if —f is conver i.e. ¥(x1,25) € I,V € [0,1]

f(>‘$1+(1 - )\)x2) Z )‘f(x1) +(1— )\)f(ac2)

Definition 5.14. A function f: I — R is said to be strictly convex if
\V/(xhl’g) < ],Il 7é ZL‘Q,V)\ S [07 1]

fOz,+(1 = XN)zy) < Af(x)) + (L= N)f(zy)

Definition 5.15. A function f: I — R is said to be strictly concave if
V(zy,ma) € I, 21 # x9,YA € [0, 1]

fOxy+ (1= A)za) > Af(21) + (1= A) f(22)

Examples:

1. The function f : x — 22 is convex on R
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Indeed for everyone x,y of I and for A € [0, 1] we have:

M+ (1=Ny]> < ?+ (1= N)y?
<

Az 20 (1= Nay+ (1 =2’ y2 < da? 4 (1= \)y?

<~

22 [—x2 + 2y —yﬂ - [—xz + 2xy — yﬂ <0
<~

A1=N)[-2"+ 22y —y?] <0

—

~A(1=X\) (z—1y)® <0 which is true

2. Affine functions are both convex and concave.
3. La fonction exp est strictement convexe sur R.

4. La fonction log est strictement concave sur R*.

5.2.2 Properties of convex functions

Proposition 5.1. Let f : I — R be a function on the interval I. The following assertions

are equivalent.
1. f is convex on I,

2. For any collection of positive real numbers o, g, - -+ , oy, with ay+ag+---+a, =1

and any collection of real numbers x1, o, ,x, in I we have

flonzy + oo+ -+ anay) <oaf (z1) +aof (x2) + -+ o f (z4).

Proof. The implication 2 = 1 is clear. The implication 1 = 2 is obtained by induction.

If n =2, then as = 1 — oy and the convexity of f leads to

[ iz + asxs) < anf (z1) + asf (z2)
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Suppose that it is true at the rank n and let us prove that it is true at the rank n + 1.

flonzy + aowa + -+ - + @y + Qi1 Tnt1)

— (S 4 S %
N ((; %) (,; (i aj)xk) ' a"“x"“>
<(§?>f(h" e )+ f (e
Q; — Qi Ty

> = J ~ (Z;Z? aj) k +1 +1

j=n k=n ap,
< (Z O‘j) 2 (ijwf (zr) + angr f (Tn41)
:alf (‘Tl) + a2f (I2> + -+ anf (xn) + an+1f (xn—&—l)

[]

Theorem 5.22. Let f : I — R be a function defined on the interval I. The following

propositions are equivalents

1. f is convex on I,

W=f(@)  f(2)=f(=)

Yy—x — z—x

2. Forall x,y,z € I,x <y < z implies !

3. Forallz,y,z€ I, x <y <z implies f(y;:i‘(:c) < f(Zi:;‘(@D}

[@=f@) & f&=f)

4. Forallx,y,z € I,x <y <z implies < S0

Proof. We prove 1 < 2, the other equivalences are checked similarly.

e 1 =2 Forz<y<zwewritey = pux+ (1 — pu)z where p = =% € [0,1]. From

Z—T

the convexity of f we deduce

Fy) < uf(@)+ (1= f(z) = L)+ L2502,

Adding — f(x) and dividing by (y — =) we get
) @) _ §2)~ @)
Yy—x B Z—x

e 2= 1. Let 1,29 € I with 27 < x5 and let A € [0,1]. It is clear that if A = 0 or
A =1then f(Az1+ (1 —XN)z2) < Af(z1) + (1= N)f (za).

If A € (0,1) then setting x = x1,y = Azx; + (1 — Mg and z = x5 we get x < y < z and

consequently

1Y) = 1) 1) = f)

y—x z2—x
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Leading to

fly) < L)+ L= 1(z),

Z—x z—x
that is
f Qa4+ (1= X)) < Af (x1) + (1 = A) f (22)

O

Definition 5.16. Given f : I — R and o € I, the application ¢, : I\ {a} — R
defined by p, = %, is called the rate of increase.

The following corollary is an equivalent version of the above Theorem.

Proposition 5.2. A function f : I — R is convex if and only if for all o € I the

function . is increasing.

Proof. Suppose that f is convex, let us show the growth of ¢,.
Let (x,y,2) € I® be such that r < y and 2z € [z,y], there exists A € [0,1] such that
z=Ax+(1-N)y

Indeed we can éwrite A = g:;, SO

= 110 < g - ) e 12N T
<— ©.(y) < ¢.(y) because y — z < 0,

on the other hand 1 — A\ = ;:w then

f(2) S AMf(@) + (1 =) f(y) = f(2) = flx) < (=N (fly) = f(=))

z—x f(z)—f(z fly)— f(z
= @10 <) - gy e (2O W
y—x z—x y—x
< v.(2) < v.(y) because z — x > 0,
hence the growth of ¢,.
During the proof, we verified the inequality of the three slopes. O

Conversely. Suppose that the application ¢, is increasing for all a € I, let us show the
convexity of f.

Let z,y,z € I? with z < 2 <y and X € [0,1].

We set z = Ax + (1 — A) y, such that A = 22 and 1 — A = =2

y—r Y=
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By growth of ¢, we have on the one hand

fly) = f(x)

— <

VI8 JOZTE) ) - > L2 (10 - 1)

— (@) = [(y)) because y —z <0 <= f(2) = f(y) <A (f(z) = [(y))

(2) SAM(2) + (1 =A) fly) == fOr+ (1 =Ny) <Af(z)+ (1 =X f(y,

)
y—z

I
- =

On the other hand

)= f@) _ )~ 1)

AN
z—x y—x

02(2) < 0u(y) =

= f(z) - fl0) < y: (f(y) = f(x)) becanse z —z > 0
= [(2) - fl@) < (1= N (f) - f(2))

<
= f(2) S Af(2) + (1= A) f(y)
= fr+ 1 =Ny <Af(z)+ (1 =2) fy),

Hence the convexity of f. O]

Theorem 5.23 (Jensen’s inequality). Let f be a convex function defined from I into R.
For any (x1,22,...,2,)€ I and for any family (A, A2, ... A\,)€E R such that znj)\i: 1 we
i=1

have the following convexity inequality:

f <zil:)\zl'z) < zf:&f(l' )

Proof. The proof is done by recurrence for all n € N

For n = 2, we have by convexity

J Ay + Xoxo) < ALf(21) + Ao f (22)

Let us suppose that the inequality is true for n € N\ {1, 2}, let us show that this

implies that it is true for n + 1.
n+1

Let (z1,x9,...,2p41)€ I and (A1, Aa, ... A\py1)€ R be such that Z)‘i =1
i=1
If Z)‘i =0, then \y =Xy =... =\, =0 and \,; = 1, inequality is true.

=1
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n
Now let Z)‘i = S5, we can write

=1

n
n+1 Z)\le

Z)\ﬂz’ = Sizls + Ap1Tny1, With S and A\, are positive, with sum equal to 1.
i=1

By the convexity of f

n+1 ZA’:CZ
f <Z)\ﬂ7z> SSXf 1215 + A1 f (Tnyr)
=1

n
Now, if we put for each 1 <17 < n,/\; = %,Z)\; =1
i=1
So, by hypothesis of recurrence we have

Eventually

n+1 n .
/ (Z&%) <5 X% Zi\glf(xz) + A1 f (Tny1)
i=1 i=1

-

v~

n+1

;Aif(a:i)
which ends the proof. n
5.2.3 Continuous convex functions
Definition 5.17. A function f: I — R is continuous at a point o of I if:
Ve>0,In>0Ve e |z —a|<n=|f(z) — fla)| <e

Theorem 5.24. If the function f : [ — R is convex on I, then it admits a right
derivative a and a left derivative a at any point in the interior of I.noté I. f is continuous

o]
on I.

Proof. Let the application be ¢, : I \ {a} — R.Va € [ for all x € Ja,afand y € ]a, b]
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Then the limit a left and a right in « of ¢, exists:

S pate) = Jim HE < g
i o) =t TS g

hence the continuity of f.

Let o € I then Va € la, o and y € ]a, b[ on has

[@) = 1) _ f) — f(a)

~
T —« Y —

When x tends to o~ and y tends to a™, we have inequality

r— b —« xr—
- i TS SO gy, S-S0
& fola) < f(ﬁﬁ) - (J;(a) 4(5)
SO
fola) < f(B)
hence the growth of f; on I
Let B8 € I°, with a <3, Vy €]a,3] we have:
Fw) — Fl@) _ £(8)~ () _ F(w) — F(5)
y—a = B-a T y-p
L SO =T FG) = @) ) = 1)
y—at Yy—Q /6—0( y—at y—ﬁ
o i) « LI < i)
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So

fala) < f(B)
hence the growth of f; on . ]
Remark 5.10. If f is continuous on I # f is convex on I
If f is derivable on I # f is convex on [
5.2.4 Convex derivable functions
Definition 5.18. A function f: I — R is derivable in o of } if and only if:

o () = £(a)

a—0 €r—

exists

Definition 5.19. Let f be a function defined on the open interval I in R. Let o be a
point of I. We say that « is a:

e local maximum of f if

Je>0,]r— ol <e = f(x) < f(a)

e local minimum of f if

Je>0,lr—a|<e = f(x) > f(a)

Proposition 5.3. Let f be a function defined on the open interval I in R. If f has a

local extremum (mazimum or minimum) at a point o of I and if [ is differentiable at «,

then f'(a) = 0.

Proof. If a is a local minimum of f, then it is a local maximum of —f, without loss of

generality we can assume that « is a local maximum.
de>0,Vre|a—c,a+e|: f(z) < fla)

so for all z in [a — €,

F@) = 0) o s i T@) = 1)

r— r—a~ r —

= f(@) =0

V
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for all z in Ja, a + €]

Fa) = @) g oo FD =10 _
r—« z—at T — «
which implies that f'(a) = 0. O

Theorem 5.25. Let a function f : I — R be differentiable and convexr on I then
Vael Ve el

f@) 2 f(a) + f(e)(z —a)

Proof. Let f be a convex and differentiable function on I, or a € I, for x € I, let

then g is differentiable on I and:

Vo € 1,g/(x) = /() - f(a).

or, f"is increasing on I, we therefore obtain the table of following variations:

T r<oa|r>w

g@) | - +
g@) | N | S
which proves that Vo € I,g(z) > 0,s0 Vo € I, f(x) > f(a) + f'(a)(z — a) O

Proposition 5.4. Let f : I — R a continuous and derivable function on I, then it is
convex if and only if f' is increasing.

Proof. Let us start with the necessary condition (growth of f’). Let x,y € I be two
points such that x < y. For all z € [z, ]

f) = f(x) _ f(2) = fy)

~
z—x z—1y

making z tend towards z

fx) = fy)

floy < B0

similarly, making z tend towards y

f(@) = fy)
T -y

< f'(y)
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so f'(x) < f'(y)-
Let us now show the sufficient condition (convexity of f).
For A € [0,1] and a = Az + (1 — \)y. Let us apply Mean value theorem theorem on

the two intervals [z, a] and [a, y], there exist ¢; € |z, a[ and ¢y € ]a, y[ such that :

F@) 1@ ) ng L0 = (@)

r—a y—a

= f'(c2)
the function f’ being increasing, we therefore have

[@) = f(@) _ f) - fla)

AN
r—a y—a

Y

this leads to f(a) < Af(x) + (1 = X)f(y). O

Corollary 5.4. Let the function f : I — R be twice differentiable and continuous on

an interval I, then it is convez if f"(x) > 0 for all x in 1.

Proof. This is an immediate consequence of the proposition proved (1.3).
f convex on I <= f’isincreasingon I <= [’ >0on [

]

Example 5.25. Case of power functions f : x — z" for h €10, +o00|. f is of class O

and we have:

f'(x) = ha" increasing YV > 0
And

f'(@)=h(h—1)2"? >0Vz >0
hence

f conver <= h<0orh>1

f concave < h € [0,1]
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CHAPTER

ELEMENTARY FUNCTIONS

Introduction

In this chapter, we propose to introduce the so-called Elementary functions.

e’ logx,a”, sinx, cosz.

The reader is already familiar with these functions but this acquaintance is based
on a treatment which was essentially based on intuitive and less rigorous geometrical
considerations. Even the question of existence was ignored.

We shall base the study of these functions on the set of real numbers as a complete
ordered field, the notion of limit and the convergence of series. Starting from the defi-
nitions of these functions, their basic properties will be studied. It is very important to
notice here that there is many ways to introduce exponential and logarithm functions.

We focus only on two approaches.

6.1 First approach

6.1.1 Logarithm

Theorem 6.1. There exists a unique function, In :]0, +00[— R such that :
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In'(z) = 315 (for all x > O) and In(1) = 0.
This function verifies (for all a,b >0 ) :
1. In(a x b) =lna+1Inb,
2. In (%) = —lIna,
3. In(a") =nlna,( for alln € N)

4. In is a continuous function, increasing and define a (one to one) bijection from

10, +00[ on R,

In(142x) 1

z =

. 11m$_>0

D

. the function In is concave and Inx < x —1 (for all . >0 ).

Proof. Integral theory ensures the existence and uniqueness : In(z) = [i" }dt.

1. Set f(x) = In(zy) — In(x) where y > 0 is fixed. Then f'(z) = yln'(zy) — In'(z) =

xiy —% = 0. Thus, the derivative of x — f(z) is equal to zero, therefore, the function

is constant et equal to f(1) = In(y) — In(1) = In(y). So In(zy)— In(x) = In(y).

2. From a side: In (a X %) =Ilna+In %, but from the second side: In (a X %) =In(1) =

0. So lna—i—ln%:O.

3. By induction.

4. In is differentiable, so continuous and In'(z) = % > 0 therefore In is increasing.

Since In(2) > In(1) = 0 then In(2") = nln(2) - 400 (when n — +o0 ). Thus
lim, , o Inz = 400. From Inx = —ln% we deduce lim, ,olnx = —oo. Using
the theorem on increasing and continuous function we get that, In :]0, +o00[— R is

bijective (one-to-one function).

In(142x)

—— is the derivative of In at the point o = 1, so it exists and equals

9. 11m$_>0
In'(1) = 1.

6. In'(z) = 1 is decreasing, so the function In is concave. Let f(z) = z—1-Inz; f'(z) =
1 — 1. f attains its minimum at 2o = 1. Then f(z) > f(1) =0. Solnz <z — 1.

]

108



Inx

Remark 6.1. In is called natural logarithm function, which is characterized by In(e) = 1.

Definition 6.1. Given a positive real number a such that a # 1, the logarithm of a
positive real number x with respect to base a is the exponent by which a must be raised
to yield x. In other words, the logarithm of x to base a is the unique real number y such
that a¥ = z..

The logarithm is denoted log, (pronounced as "the logarithm of x to base a', "the
base-a logarithm of x", or most commonly "the log, base a, of x").

An equivalent and more succinct definition is that the function log, is the inverse

function to the function x — a®. More precisely we define

log,(z) =

such that log,(a) = 1.

Remark 6.2. If a = 10 we obtain the decimal logarithm log,, that verifies log,,(10) =1
(and so logy, (10") = n ). For some purposes we use : x = 10Y <= y = log,y(z) in

computer sciences log, (2") = n is widely used.

6.1.2 Exponential

Definition 6.2. The inverse function of In :]0,400[— R is called exponential function,
noted exp : R — |0, +00].

y expx




For z € R.

Proposition 6.1. Ezponential function verifies the following properties:
e exp(lnz) ==z for allz > 0 and In(expz) =z for all x € R

—exp(a + b) = exp(a) x exp(b)

—exp(nz) = (expz)”

—exp : R — 10, +o0[ is continuous, increasing where lim,_, o, expx = 0 and lim,_, , exp =
+00.

o Exponential function is differentiable and exp’ x = exp x, for all x € R. It is convex

and expr > 1+ x

Proof. Exponential function is the natural logarithm inverse.
]

Remark 6.3. The ezponential function is the unique function which verifies exp'(z) =

exp(z) (for all z € R ) and exp(1l) = e, where e satisfies Ine = 1.

Proposition 6.2.

|
lim L 0 et lim XPT _ +00

r—+o00 r—r+00 x

(a
¥ expx A>1)

Proof. 1. One has from previous Inz < x — 1 (for all x > 0 ). Therefore Inz < z thus

111\/%5 < 1. Then

Inz In <\/E2> In+/z
< — N
x x x vV Jr

which implies that lim,_, IHT‘” = 0.

2. We have expx > 1+ (for all z € R ). So expx — +oo (when 2 — 400 ).

v In(expzr) Inu

exp T exp T U

We conclude using (1). O
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6.2 Second approach

Exponential functions

The power series

2 3 n
r T x x
1+ﬁ+5+§+.“+ﬁ+”' (61)
is everywhere convergent for real . We proceed now to examine in detail the function

represented by this series.

Definition 6.3. The function represented by the power series (6.1) is called the Expo-

nential function, denoted, provisionally, by expr. Thus

1+$+x2+ i
ETPr — - - —_—
P 12 n! (6.2)
exp(0) =1
and
11 1
exp(l):1+ﬂ+§+...+m+... (6.3)

The series on the right hand side of ( 6.3 ) converges to a number which lies between

2 and 3. This number is denoted by e, the Fxponential base and is the same number as

1 n
lim (1 + )
n—oo n

represented by

Thus exp(1) = e.

The Additional Formula

The function expzx, defined by (6.2) is continuous and differentiable any number of times,
for every .

By differentiation, we get

exp'(x) = expx

exp’ (x) = expx

exp™ (z) = expx
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Further we state (justification may be seen expanding by Taylor’s Theorem)* that

exp (x1 + x2) = exp (1) - exp (x2)

sexpr = exp (11) + 2 (x — 1) + ..., for all values of z and .
Replacing x by x1 + x2, we get
exp (x1 + x2) = exp(z1) {1 + B+ 2—% +.. } = exp(z1) - exp(x2) This formula is

called the Addition formula for the exponential function. It gives further

exp (z1 + 22 + x3) = exp (x1 + x2) - exp (z3)
= exp (z1) - exp (xq) - exp (x3)

and repetition of the process gives, for any positive integer ¢,

exp (1 + 22+ ... +x,) = exp(z1) - exp(x2)...exp (z,) (6.4)
fr)=x=23=...=2,=2, we get
exp(qr) = exp(x)’ (6.5)

Hence for z = 1,

exp(q) = {exp(1)}? = e, for any positive integer ¢

But since exp(0) = 1, therefore the above relation holds for ¢ = 0 also.
Hence exp(q) = e? holds for all integers > 0.
Again replacing each x by p/q in (6.5), we get

p IANE
exp <qq> = {exp (q>} for positive integers, p, g

or

exp(p/q) = {exp(p)}"/7 = e?/T [ .- exp(p) = €7

Hence exp(m) = €™, for all rational numbers m > 0.
For any positive irrational number ¢ there always exists a sequence (z,) of positive
rational terms, converging to &.

Now for each n

exp (z,) = e*n.
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When n — +o0o, the left hand side tends to exp(£), and the right hand side to e, so

that we get
eap(€) = e
expr = €*, for real x > 0 (6.6)
Again by Addition formula,
expr - exp(—x) = exp(r — x) = exp(0) =1 (6.7)

Thus we conclude that expx # 0, for any real x, and that for z > 0,

cxp(—r) = erpr T e 0

Consequently, expr = e” holds for all real x.

Monotonicity

By definition

expr >0,V >0

so that from (6.7) it follows that

exp(—z) >0, Vx>0

Hence expx > 0, for all real x.

Again by definition, for real z,

exrpr — +00, as £ — +00

Hence (6.7) shows that

erpr — 0 as x — —o0

Also by definition,

0 <z <y = exp(z1) < exp(x2)
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Also it follows from (6.7) that

exp (—xg) < exp(—x1), when —xzy < —x1 <0

Hence the function exp is strictly increasing from 0 to +00 on the whole real line.

=] +1,, for z > 0, so that z"e " < @

lim, o 2™e™ =0, for all n

Note. By definition e* >

This fact we express by saying that e” tends to +o0o "faster" than any power of x, as

T — +00.

Logarithmic functions (base e)

Since the exponential function exp is strictly increasing on the set R of real numbers
(i.e., exp : R — RTis one-one, onto), it has inverse function In (or log, ) which is also
strictly increasing and whose domain of definition is RT (= exzp(R)), the set of positive
reals. Thus [n is defined by

exp{in(y)} =y, (y > 0)

or
In{expx} = x, (x real ) (6.8)
or equivalently, for any real z,
expr =y = In(y) =z
e =y=log.y==2x
Thus the logarithmic function In ( or log, ) is defined for positive values only of the
variable.

By definition,

exp(—z) = l = In (l> = —z = —In(y)
ea:p(O) =1=1In(l)=0=log,1
p(l) =e=In(e) =1=log.e

Again

exrpr — +00 as r — +00

and
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expr — 0 as x - —o0

In(z) — 400 as x — +00

In(x) - —ccasxz — 0

. Writing u = exp (x1) ,v = exp (x3) or In(u) = x1,In(v) = x5 in (6.4), we get
exp (1 + x2) = v

= In(uv) = 1 + 22 = In(u) + In(v)

which is a familiar property of the logarithmic function and which makes logarithms
a useful tool for computation.

Since the function exp is differentiable, therefore, its inverse function In is also differ-
entiable.

Hence differentiating (6.8), we get

In'{expx} - expr =1

Writing expr = y, we get

which implies that

v dx

In(y) = [ — (6.9)

1 T

Quite often (6.9) is taken as the definition of the logarithmic function and thus the
starting point of the theory of the logarithmic and the exponential functions.

Note. In theoretical investigations, it is always more convenient to use the so-called
natural logarithms, that is to say, those with the base e. Hence in our further discussion,

log x shall always stand for in(x) or log, x.

Generalised Power Functions

The meaning of a” is well understood when a is any positive real number and =z is
any rational number. We shall now give a meaning to a® when x is any real number

whatsoever. We define thus:
Definition 6.4. a” = exp(zloga), for all x and a > 0.

Evidently the range of a® is the set RTof positive reals, i.e.,
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a® > 0,Vx

Therefore a® - a¥ = exp(xloga) - exp(yloga)

= cap{(z +y)loga} = a™™"

Thus a®-a¥ = a™"¥
Let us now verify that this definition of a” is consistent with that already known to
us for x, an integer or a rational number.

(i) Let x = n, a positive integer. Therefore

= exp(nloga) = explloga +loga + ...n times |

(
= exp(loga) - exp(loga)...n times

=a-a...n times

(ii) Now let © = —n, n being a positive integer.

Therefore

—n

a " = exp(—nloga)
loga) + ( loga)+...n times |

zp|(—
exp [log + log +...n times }

1 .
= ( ) - exp (log > ...n times
a
1

.n times

\ —

a a
Thus, exp(zloga) has the same meaning as a” when z is an integer.
(iii) Let now x = p/q, where p, q are integers, and ¢ is positive.

Now

exp (p log a) = qP/1
q

ear (Z10s) |
exp | =loga
q

=a? = exp(ploga)
so that exp (f log a) is ¢ th root of exp(ploga).

Thus, a”/? is a ¢ th root of a”.

Hence, the definition holds good when x is a rational number.

Thus, the above definition of a® agrees with what is already known to us about a”.
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Logarithmic Functions (any base)

Definition 6.5. a¢* =y < log,y ==.

Since y is always positive, therefore the logarithmic function, log,, is defined for
positive values only of the variable.
Evidently

Also, from definition,

It may be easily shown that

log,1=0,log,a=1

log, « + log, y = log,(zy)
log, z —log, y = log,(z/y)
log, ¥ = ylog,

log, x - log, b = log,
log,a-log,b=1

6.2.1 Trigonometric functions

We are now in a position to introduce rigorously the circular functions, employing purely
the arithmetical methods. For this purpose, we consider the power series, everywhere
convergent (absolutely and uniformly) and the functions represented by them.

Definition.

x2 332 .TQTL
—1- L
Cle) 21 FED gy e
I3 .735 1,271-1-1
S T G | N S
Swy=w—grt g AV G gy e W

Each of these series represents a function everywhere continuous and differentiable any
number of times in succession. The properties of these functions will be established, tak-
ing as starting point their expansions in series form, and it will be seen finally that these
coincide with the functions cosx and sinx with which we are familiar from elementary

studies, i.e., C(x) = cosx and S(z) = sinz.
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Properties of the Functions (C(z),S(x))
(i) The functions C(z) and S(x) are continuous and derivable for all x; in fact it may

easily be seen that
C'(z) = —S(x) and S'(z) = C(x)

(ii) From definitions,

S(0)=0,C(0) =1
(—2)*  (=2)° o (=)
S(—zx)=—x — i + = .+ (-1) R
x+f_,,,+(_1)”(2a;lTLJ:1)!+... = —S(z)Vz

Similarly, C(—z) = C(z)Vx.
(iii) The Addition Theorems. These functions, like the exponential function, satisfy

simple addition theorems, by means of which they can then be further examined.

First Method. By Taylor’s expansion for any two variables, z; and x5 (since the two

series converge everywhere absolutely).

C’ ol
C($1+$2>:C<$1>+ :Et;pl)xg—i- 2(‘:):1)I§+
_ S (1) C(z1) 5 S(z1) 4

As this series is absolutely convergent, we may rearrange it in any way we please

Therefore

C 1 F2) = O {1_ 2 Tl
=C(21)-C(22) = 5 (1) - S (w2)

Similarly,

S (ml + $2) = S(SL’1> . C(l’g) + C (Z‘l) . S(LEQ)
Second Method. For any fixed value of 5, consider the functions

f(x1) =8 (21 +22) = S(21) - C(32) — C(21) - S (22)
g (1) = C (21 +22) — C(71) - C (229) + 5 (1) - S (72)

Differentiating with respect to x1, we get
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filar) = C (a1 +a2) = C(x1) - C(x2) + 5 (1) - S (22) = g (21)
g (x1) = =S (@1 4+ x2) + S (21) - C (x2) + C (1) - S (w2) = — f (1)
therefore - [ (o2) + g2 (11)] = 27 (o0) (1) + 29 (22) ¢ ()
=2f (z1) g (1) — 29 (1) f (21) = 0,V

= f%(x1) + ¢*(x,) is a constant, Va,

Hence for all x;

)
= f(z1) =0, g(x1)=0
therefore C(xy+x3) =C(21) C(xg) —S (1) -5 (2)

and

S(x1+my) =85 (x1) - C(x2) +C(x1) - S (x2)

The form of these theorems coincides with that of the addition theorems for the
functions cosine and sine, with which we are clearly acquainted from an elementary
standpoint. With the help of these theorems, we shall now show that the functions C'
and S satisfy all the other so called purely trigonometrical formulae-in fact C' and S are
same as the functions cosine and sine. We note, in particular:

(a) Changing x5 to —x2,
C(l’l — lL‘Q) == C(I’l) . C(l’g) + S (l‘l) . S(ZL‘Q)
S (.731 - ZL'Q) == S (I’l) . C (Ig) — C (ﬂ?l) . S (.TQ)
(b) Writing xo = —x1, we deduce that
C? (z1) + S? (21) = 1 or C*(x) + S*(z) = 1,Vx
= [S(z)] <1,|C(2)] < 1,V

(c) Replacing 1 and zy by =,
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Theorem 6.2. There exists a positive number w, such that
C(r/2) =0 and C(z) >0, for 0 <z < 7/2

Proof. Consider the interval [0, 2].
We know C'(0) = 1 > 0; we shall now show that C'(2) < 0.
Now

22 2t 26

22 22 20 22
R (S - (.
2! 3. 6! 7.8

Since the brackets are all positive, we have

so that C(2) is negative.
Thus, the continuous function C'(z) is positive at 0 and negative at 2 .
C(z) vanishes at least once between 0 and 2 (by the Intermediate-value theorem).

Further, since S(z) is positive in [0, 2], where

) s (- 50)
S(m)-x(l—zs +§ l_ﬁ +...

therefore, the derivative (—S(z)) of C(z) is always negative for all values of = between
0 and 2 . Consequently C'(x) is a (strictly) monotonic decreasing function in [0, 2], and
can therefore, vanish at only one point in [0, 2]. Thus, there exists one and only one root
of the equation C'(x) = 0 lying between 0 and 2 . Denoting this root by 7/2, we see that
/2 is the least positive root of the equation C'(z) = 0. O

Clearly C'(z) > 0, when 0 < z < 7/2.

Using the above results, we deduce that

(a) S(x) >0, when 0 < z < 7/2.

Since the derivative of S(z) is non-negative in [0, 7/2], therefore, S(z) is a strictly
monotonic increasing function. Also since S(0) = 0, therefore, S(x) is positive for 0 <
x < 7/2.

(b) As C*(w/2) + S%*(7/2) = 1 and C(7/2) = 0,

= S%(r/2)=1= S(n/2) = +1

But, by Lagrange’s Mean Value Theorem,

S(m/2) — S(0) = (7/2)C(«) > 0, where 0 < o < 7/2

= S/2)=1
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(c) C(r) =2C*(7/2) — 1= —1

S(m)=25(n/2)C(w/2) =0
(d) C(2r) =1,5(2m) =0.
(e) C(n/2) = 2C*(w/4) — 1.
rejecting the negative sign, as C(mw/4) is positive.
Similarly, S(7/4) = 1/v/2
(f) It finally follows from the addition theorems that for all x,

S(;ﬂ'—l‘) = C(z), C(;W—l‘)IS(I)
< 7T+£L’>:C (;W—F%)Z—S(l')
S(m+z) =—-95(z), C(r+z)=—-C(z)
S(m —x) = S(x), C(r —x) = =C(x)

S2m +z) = S(z), C2r+1z)=C(2)

Thus, we see that the functions C'(z) and S(z) exactly coincide with the functions
cosx and sinx respectively, and so we shall henceforth use cosz and sinz in place of

C(z) and S(x) respectively.

The Functions tan z,cot x

The function tan x and cot z are defined as usual by the ratios

sinx cos T

tanx = , :
COS X sinz

and as functions they, therefore, represent nothing new. The expansions in power
series for these functions are also not so simple. A few of the coefficients of the expansions
could be easily obtained by division, but that gives us no insight into any relationships.

Clearly tan x is defined, continuous and derivable for all values of x except those for
which the denominator, cos x, vanishes, which is the case for z = %(271 + 1)m, n being any
integer, positive, negative or zero.

We have

tan(m + x) = tanx,

so that, tan x is a periodic function with period .

Also we may easily show that when = # 1(2n + 1),
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d ; d (Sinx) 1
—tanzr = — =
dzx dr \coszx cos? x

Theorem 6.3. Show that

lim tanx =00, lim tanz = —oc.
x—>%7r—0 $—>%7T+0

Proof. Let k be any positive number.
As lim,_,/osinx = 1,36; > 0, such that ( taking € = %),
1

. 1 1
3 <sinz, Vré€ [271' — (51,27T+(51}

Again, since, lim,_,, /5 cosz = 0, therefore, 39, > 0, such that

1 1
-~ — (52, §7T + 521|

1 1
—— <cosr < —, Vre [2

2k 2k

As cos z is positive for x € [0, 7/2], and negative for = €|7/2, 7], we have

1 1 1
0<COS$<%, Vo e |:27T—(52,27T[
1 1 1
~or <cosx <0, Vxe 3™ 27T—|—52]
Let § = min (41, d3) therefore from (i) and (ii),
and from (i) and (iii),
i 1 1
tanz = S >k, Vre|-m—04, =7
CoS T 2 2
i 1 1
tanx = ST < -k, Vz E} —m, =T+ 5]
COS & 2 2

Inverse Trigonometric Functions cos™!y,sin™'y, tan"!y

We will denote the inverse trigonometric functions by

sin™!, cos™!, tan™!, cotan™!,

or:
sin"™, cos'?, tan"™", cotan'™",
or even:

arcsin , arccos , arctan , arccoth.
cos~!y function

Since, as may be easily seen, cosx strictly decreases from +1 to —1 as x increases from
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0 to 7, the function cos is invertible and its inverse, denoted as cos™!, is a function with

domain [—1, 1] and range [0, 7]. We write

Y =COST <> T = cos_ly.

Definition 6.6. Given y (where —1 <y < 1),cos™ 'y is that x which lies between 0 and
(0 <z <m) and cosz =y.

cos~ !y is derivable in the open interval | — 1,1[, with —1/4/1 — ¢? as its derivative.

In fact, we have .-, % . % =1,and v = cos ' y,y = cosx
d ) 1 1 -1
dy (cos"y) 4 cosa sinx /1— y2’y 7
arccos : [—1,1] — [0, 7]

arccosx 2

sin~!y function
Since sinz is a strictly increasing function in [—7/2,7/2], with range [—1, 1], therefore,
the function sin is invertible and its inverse function is denoted by sin™!, with domain
[—1,1] and range [—7/2,7/2].

Also

y=sinzr <z =sin"ly

Definition 6.7. Given y where —1 < y < 1,sin" 1y is that x which lies between —m /2
and /2, (—7/2 <z < 7/2), and sinz = y.

It may be shown as before that sin~!y is derivable in the open interval | 1,1[ and

d 1 1
" sin Yy W’y =+

arcsin : [—1,1] — [—g,—i—g}
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E 5
2 arcsinx

tan~!y function
Since tanz is strictly monotonic with domain | — 7/2,7/2[ and range | — 0o, 00|, the
function is invertible, we have

y=tanxr & x :tan’ly

so that tan™!y is a function with domain | — oo, oo and range | — 7/2, 7/2|.

Definition 6.8. For any numbery, tan™"'y is that x which lies between —m /2 and w/2(—7/2 <
x < 7/2) and tanz = y.

™ ™
+]

arctan : R —| — 513

Y
I
al:

[

"

It may be seen that

6.2.2 Hyperbolic Functions

The trigonometric functions cos o and cos v are defined using the unit circle 22 + 3% = 1

by measuring the distance « in the counter-clockwise direction along the circumference
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of the circle. The area of the sector so determined is 5, so we can equivalently say that
cosa and cosa are derived from the unit circle 22 + y? = 1 by measuring off a sector
(shaded red ) of area §. The other four trigonometric functions can then be defined in
terms of cos and sin.

Similarly, we may define hyperbolic functions cosh a and sinh « from the "unit hyper-
bola"

2? — y* = 1 by measuring off a sector (shaded red ) of area S to obtain a point P

whose x - and y-coordinates are defined to be cosh o and sinh a.
y y

(cosh &, sinh &)

Since at this point we do not yet know how to compute the areas of most curved
regions, we must take it on faith that the six hyperbolic functions may be expressed

simply in terms of the exponential function:

sinha = &=
«@ —
cosha = “£—
tanh o = b et
cotanh o = 2?51}112 = EZfz:Z
sech v = coslha = e"‘—fe—"‘
cosecha = —— = 2

Note that the domains of sinh, cosh, tanh, and sech are (—oo, 00) and the domains of

@

cotanh and cosech are (—o00,0) U (0,00). We can check that the point (%, %)

lies on the unit hyperbola:

<6a+6a)2 (ea_ea)z_ 62a_+_2_’_672a 6204_2_}_67204 4

2 2 4 - 4 =51

"Pythagorean" Identities and some laws

This gives us the first important hyperbolic function identity:

cosh? a — sinh?a =1
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This may be used to derive two other identities relating the two other pairs of hyperbolic

functions:

1 —tanh?a =sech?’a and  cotanh?a — 1 = cosech? «

It is clear that sinh, tanh, cotanh x and cosech are odd functions, while cosh, cotanh ,

and sech are even, so we have the corresponding identities:

sinh(—z) = —sinh z, tanh(—x) = — tanh x
cotanh(—z) = — cotanh x, cosech(—x) = — cosech =

cosh(—x) = cosh x, sech(—z) = sech x.

We can use the above formulas for the hyperbolic functions in terms of e* to derive

analogs of the identities for the trigonometric functions:

. e oo oBfieB (=) (Pre )  atBiaB_gath_g—a-p
sinhacosh § = “——“5F— = - = € e ¢ e
eP—eB erqe= (eﬁ*e_ﬁ)(eoure_a) eBraef—a_p—Bta_o—B-a

2 2 4 4

sinh 8 cosh a =

Adding these two products gives:

. . atfyoa—B_o—atB_,—a—p BtaB—ay —Bta_,—B—«
sinh a cosh 3 + sinh 5 cosh o = &—+¢ ¢ e 4 frote +Z e _
2e2+8 _9e—a—F eotB_e—a—B elat+B) _e—(a+B

) .
i = 5 = 5 = sinh(a + 5)
and subtracting these two products gives:

. o _ e8P yer B _ematB_egma—B  Btajfoaie—fta_g—B-a
sinh v cosh 3 — sinh S cosh o = 1 T =

20— F_2¢—(a—F) e P _e—(a—F)

2e 0 _ e D nh(a — )
Similarly,

_ ete ¥ ePre P (eaJre_a)(eBJre_B) _ edtBiea—BeB—ao—a—p
cosh acosh 3 = <5 5 7( )L(lﬂ g = -
. . _ e% e eB_e—B . eY—e ) (eP—e™ - 6&+676a_£76ﬁ_a+6_&_ﬂ
sinh asinh f = <= o = T = -

Adding these two products gives

. . oty ea—B | of—ag—af a+B_ga—f_of—ay o—a—p
cosh a cosh 8 + sinh asinh 8 = &—+¢ +46 te + £ —F te
_ 9eatBy9e—a—B e tB 1 e—(a+8)

4 = 2 = cosh(a + )
and subtracting them gives:

. . atB L oa—B L B-ay —a—f atB_ca—B_B-—ay —a—f
cosh acosh f — sinh asinh § = &—F—F&—=¢ — e —= de =

260‘*’3—226*‘”5 _ e“*B—l—;’(o‘*B) = cosh(a — f3)

Summarizing, we have four identities:

sinh(a + ) = sinh v cosh § + sinh 3 cosh « sinh(« — ) = sinh « cosh 5 — sinh [ cosh «
cosh(a + 3) = cosh a.cosh 8 + sinh arsinh 3

cosh(a — ) = cosh acosh  — sinh asinh 3

which are almost exactly parallel to those for the trigonometric functions and may be

used to derive sum and difference formulas for the other four hyperbolic functions.

Letting 5 = «a, we get:
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sinh 2av = 2 sinh a cosh «
cosh 2a = cosh? a + sinh® & = 1 + 2sinh? o = 2cosh? a — 1, so

cosh? o = C‘)Sh% and sinh? o = %, and thus:

cosha = (/@h2otl and sinha = /@202l cosh & = /@hatl gpd sinh g =

cosha—1
2
Derivatives
d d r _ ,—T r__ (_,—=x T —x
dx(sinhx):dx<€ 26 ):6 (2 ) _C —1—26 = coshx
d d T —x T = r __ ,—T
d:L’(COth):dI<e +26 ) = ¢ +(2 ) _ ¢ 26 = sinhx
d d (sinhx)
tanhz) = — =
d:v( anhz) dr \coshz
cosh z(sinh )" — sinh z(cosh )’ coshwcoshx —sinhxsinhz
cosh? x B cosh’® z B
cosh? z — sinh® z 1 9
5 = 5— = sech”x
cosh” z cosh” x
d d (coshzx
-4 (52 -
dx(co anh) dz \sinhz
sinh x(cosh )" — coshz(sinh )’  sinhxsinhx — coshxzcoshz
sinh® x sinh? x
sinh® z — cosh® z -1 9
— = ——5— = —cosech” x
sinh” z sinh” z
d d
%(sech x) = %(cosh )t =
(—1)(cosh x)"*(cosh x)’ = (—1)(coshz) ?sinhx = — sech z tanh z
(cosech.r) = = (sinh.r)
—(cosechx) = —(sinhx)™" =
dz dz
(—1)(sinh z)%(sinh )’ = (—1)(sinh )2 cosh z = — cosech x cotanh x

Then we can summarize them as:

d
—(sinhx) = coshx —(coshx) = sinhx

dx dx
d
o (tanh z) = sech® z %(cotanh r) = — cosech® x
d
o (sechx) = —sech x tanh z o (cosech ) = — cosech x cotanh x

The domains and ranges are summarized in the next table:
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function domain Range

o0) (—00,00)
cosh 00) 1, 00)
tanh ) (_17 1)

sinh (—o0
(—o0
(—oo

cotanh | (—o0 O) (0,00) | (—o0,—1) U (1,00)
(—o0

00) (0,1])
O) (0,00) | (—00,0)U (0, 00)

sech

cosech | (—

Graphs of the Hyperbolic Functions

Y y Y

tanh x
cotanh x

¥ 4 sinhx ¥ = coshix
V= cosech x v = sech|x

71T

Inverse Hyperbolic Functions

sinh, tanh, cotanh and cosech are one-to-one, but cosh and sech are not. For the purpose
of defining the inverse of cosh and sech we will restrict their domains to [0, 00)

We will denote the inverse hyperbolic functions by

sinh™, cosh™, tanh ™!, cotanh ™!, sech ™!, and cosech™*

or:

sinh™. cosh™, tanh™, cotanh™, sech”™”, and cosech™

or even:

arcsinh , arccosch , arctanh , arccothh , arcsech , and arccosech .

The usual Cancellation Laws hold in the appropriate domains:
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sinh (sinh™ x) T sinh !

1 1
cosh (cosh™ x) x cosh™

( sinhz) =
(
tanh (tanh ! x)
( -1
(sec
(

( x
(coshz) ==z
h™!(tanhz) =
(

&
—+
Q
=]

cotanh cotanh )—a: cotanh ~ 1(cotanhx) x

sech (sech ) sech ! (sech z) =

cosech (cosech 1z) =z cosech ~ I(COSGChCB) T

The derivatives of the inverse hyperbolic functions may be found the same way the
derivatives of the inverse trigonometric functions were found: by differentiating the left-

hand Cancellation Laws above: for example let us differentiating sinh (sinh*1 x) =T we
get

cosh (sinh_1 a:) (sinh_1 :1:)/ =1, so
1

=1 N\
(smh :v) ~ cosh (sinh*1 x)

Using the identity cosh® x — sinh® z = 1 we get

cosh?z = 1 + sinh? z, so

coshx = /1 + sinh?  and therefore

cosh (sinh*1 \/1 + smh2 sinh™* :U \/1 smh smh a:))2
=V1+x?

. _ !/
Thus we have (smh 11’) = 1
14z

One may similarly derive the derivatives of the other hyperbolic functions:

1
1 — a2

Example 6.1. Solve the equation sinhy = x for y in terms of x. We have sinhy =

Y_e Y
“— =u, s0

eV —e ¥ =2x ore¥—2x—e Y =0. Multiplying both sides of this equation by e¥ we
get:

129



(ey)2 —2zeY — 1 =0, a quadratic equation in €’ which has solution

_ (20 V(=22 A (D) 2w E VAR AL sy
2 2

eY

Since x — Va2 + 1 < 0 and we must have e¥ > 0, we get
eV =x+vaz+1.

Taking logarithms of both sides of this equation, we get
y=In(z+ V2?2 +1), so we have

sinh™ 'z =1In <m + Va2 + 1)

Similarly,

1 1
cosh™tz =1n (x + Va2 — 1) and tanh 'z = 5 In ( + x)

We then have
cosech™ z = sinh ™! % =In (% + (%)2 + 1) =In (l + 1+f‘32> —
In (; + m>

||

Simalarly
cotanh ™ x = %ln (ﬁ) and sech ™'z =1In (@)

z—1
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CHAPTER

7

TAYLOR POLYNOMIALS, LITTLE O
AND BIG O, LIMITED DEVELOPMENT
IN A NEIGHBORHOOD OF A POINT

7.1 Taylor Polynomials (Brook Taylor-1685-1731)

Definition 7.1. Let xy € [a,b] and suppose that f : [a,b] — R is such that the deriva-
tives ' (xo), fP (x0), O (20),..., ™ (x0) exist for some positive integer n. Then the

polynomial
Pu(e) = (20) + I () (2 = 20) + 5, /P (w0) (& = 20)* +

1 .o n
“+af( () (x — o)
is called the nth order Taylor polynomial of f based at x¢. Using summation conven-

tion, P,(x) can be written as

zn: 7o) (x — x0)" .

k=0

By construction, the derivatives of f and P, up to order n are identical at xg :
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P, (w0) = f (20)
PV (zo) = fU) (20)

pn (z0) = o (z0) -

It is reasonable then to suspect that P, (z) is a good approximation to f(x) for points

x near xo. If € [a,b] then the difference between f(z) and P,(z) is

and we call R,(z) the nth order remainder based at xy. Hence, for each z* € [a,b],
the remainder R, (2*) is the error in approximating f (z*) with P, (z*). You may be
asking yourself why we would need to approximate f(z) if the function f is known and

given.

Example 7.1. If say f(x) = sin(z) then why would we need to approximate say f(1) =
sin(1) since any basic calculator could easily compute sin(1) ¢ Well, what your calculator
is actually computing is an approximation to sin(1) using a (rational) number such as
P,(1) and using a large value of n for accuracy (although modern numerical algorithms
for computing trigonometric functions have superseded Taylor approximations but Tay-
lor approximations are a good start). Taylor’s theorem provides an expression for the

remainder term R, (x) using the derivative f"+1),

Theorem 7.1. (Taylor polynomial with generalized remainder.) Let f, g : [a,b] — R be
two functions such that for some n € N the functions f, fO, f@ ... f™) are continuous
on [a,b] and fOFY) exists on (a,b), we suppose that g is continuous on [a,b] and g' exists
on (a,b) such ¢'(x) # 0,Yx € (a,b). Fiz x¢ € [a,b]. Then for any x € [a, b] there exists c
between x¢ and x such that

£ (z)

)= 2 I - )+ )

where

) () (2 — )" (g(x) — g(x
Rn(a:):—f (o) ( n!g)/(c(f() 9(@0))

Proof. Suppose that zy < x, we consider the function ¢ : [xg, 2] — R defined by

n (k)
o) = f) - Y T @ o,

k=0 k
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¢ is continuous on [zg, x] and admits a derivative on (xg, z) equal to

) n_ f(k+1) AL () r — )1 (n+1) —1)"
¢(t)=—Zf (t) (x —1) k!kf -t _ [0 @-0)"

n!

= Tg < c<uz.

We proceed similarly when xg > = by considering |z — x| O

Theorem 7.2. (Taylor polynomial with Lagrange remainder.) Let f : [a,b] — R be a
function such that for some n € N the functions f, fM, f@ . ™ are continuous on
[a,b] and f"V exists on (a,b). Fiv xo € [a,b]. Then for any x € [a,b] there exists c

between x¢ and x such that

®) (5,
fa) =3 1) e R )

L

where

(@)
Fnln) =Gy

This is Lagrange form of the remainder.

(I . .To)n+1 ]

Proof. Special case of the above theorem by

g(t) = (¢ — )™,
and the proof is complete. O

Example 7.2. Consider the function f :[0,2] = R given by f(x) = In(1 + z). Use P,
based at xo = 0 to estimate In(2) and give a bound on the error with your estimation.
Solution

Note that f(1) = In(2) and so the estimate of In(2) using P, is In(2) ~ P4(1). To
determine Py we need f(0), f1(0),..., f®(0). We compute
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f@) =1 FO0) =1
@) = s TP =
fO(x) = a f o F®(0) = 2
@) = e 100 ==
Therefore,
Py(z) =z — legls 1a

2 3 4

Now P4(1) =1— 1+ 3 — + = 5 and therefore

_ 7
127

The error is Ry(1) = f(1) — P4(1) which is unknown but we can approximate it using

In(2) ~ P,(1)

Taylor’s theorem. To that end, by Taylor’s theorem, for any x € [0, 2] there exists ¢ in

between o = 0 and x such that

124,

51 +c)5x
1

5(1+¢)®

Therefore, for x = 1, there exists 0 < ¢ < 1 such that

1
Ry(l) = —.
+(1) 5(1+ c)’
Therefore, a bound for the error is
1 1
R =|——+| <=
[Ra(1) ‘5(1—1—0)5 =5

since 1 +c¢ > 1.

Theorem 7.3. (Taylor polynomial with Cauchy remainder.) Let f : [a,b] — R be a
function such that for some n € N the functions f, fO, f@ . 0 are continuous on
[a,b] and f"V ezists on (a,b). Fir xy € [a,b]. Then for any x € [a,b] there exists c

between xq and x such that

nf® Lo k
Fa) =3 1) oy R )

= k!
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where

This is Cauchy form of the remainder.

Proof. Special case of the above theorem by
git)=(t—1z), c=umzo+0(x—x)).

and the proof is complete. O

Corollary 7.1. Let n € N and {ag, a1, ...,a,} C R. Then for all xy € R, the polynomial
p(r)=ap+az®>+ ... +a 2", x €R. (1)

Can be rewritten by the form

p(x) =by+ by (x—20) + by (. —x0)> 4 ...+ by (x — )",z €R. (2)

Where {bg, b1, ...,b,} C R.

Proof. Set x = x( in the equation (2), we obtain by = p (z¢) . Derivation of (2), we get
P (x) = by + 2by (x — x0) + ... +nb, (v — 20)" !

Then by setting x = o, b1 = p' (z0) .

The second derivative, one has p” (x) = 2lby+...+n (n — 1) b, (x — x0)" " and for = =
p// (xo)

2!
of (2), we repeat the same technique, we get the general formula

we obtain p” (z¢) = 2!by, thus by = , In order to determine the others coefficients

(k)
b, =2 k(,“")) (k=0,1,2,...,n) (3)

Finally, we obtain Taylor polynomial by introducing coefficients from the equation (3) in

the development(2).

1" (-To)

2!

(x —20)° + ... +

p(z) = plao)+p (w0) (& — o) + 2
o) (4
- - k:(' )

=0

(x —z0)"  (4)

ol

Example 7.3. Ezpand the polynomial p (x) = x* — 523 + 52% + 2 + 2 according to the

powers of x — 2.
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We have xq = 2, then
P (z) = 42° —152° + 10z +1, p” (z) = 1222 = 302410, p” (z) = 24z —30, p™ (z) = 24
and
p(2)=0,p'(2) = =7.p"(2) = =2,p" (2) = 18,p' (2) = 24

SO

/ " " (4)
p@) = @+ P2 w94 T g o g T (g

= —T@=2)+(-)(=-2"+3@—-2°+(x-2)"
= T(@-2)— (-2 +3@~2)"+(z -2

Taylor polynomial with Young remainder or Peano remainder

Theorem 7.4. Let [ : [a,b] — R be a function such that f € C™ on [a,b]. Fixzg € [a,b].
Then there exists a function € :[a, bj— R which satisfies lim,_,,, €(x) = 0, such that for

all z € [a, b],

n ) (1
Fo) = flag) + 30 L)

k=1

(z — 20)" + (7 — x0)"€(2).

Proof. Let xy € [a,b]. We rewrite the Taylor polynomial, with Lagrange remainder to

the order n — 1 on the interval [z, z]( or [z, x¢]); so there exists ¢, € [xo, 2| such that

n—1 r(k) T T — T n
£@) = fla) + X L gy EZ 0 g0 o
n (k) T L T — To n . .
= flo)+ 3 I =g O (0 ) ) )
We set for = # xo,
1 f P (o)
e(x) = m (f(x) — f(@o) — ]; Il (z — %)k)

and, since f( is continuous at xy, we deduce from the equality (*) that lim,_,,, €(z) =

In the next we state a theorem more stronger
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Theorem 7.5. Let zy € [a,b]. We suppose that the function f : [a,b] — R isn'™ derivable
at point xo. Then there exists a function € : [a,b] — R which satisfies lim, ., €(z) =0

such that for all x € [a,b],

n ) (g
(@) = flan) + > T

k=1

x — 10)F + (v — 20)"e(2).

Proof. By induction on n. Let n € N and set H, the proposition: for all function

f:]a,b] — R, n'™ times derivable at point xq, we have :

n (k) o
T pp—— (f(a:) — f(zo) — 2_: / k:<! )(x—%)k) =0

z—z0,7£30 (T — To)" =
H, is obviously true, since the function is derivable at point xy. Suppose that H,, is
true and consider the function f : [a,b] — R, which is (n+1)™ derivable at point zo. The
derivative function f’, which is defined on a certain subset J = [a, b|N] xg — 11, To + M1, is
n'" times derivable at zy. Let ¢ > 0. There exists 7. > 0 such that, for all ¢ € [a, b]N] zq —
Ne, To + Ne|, we have :

n o fkt1) (o
710~ 1) = >0 T )| < el
k=1 :

We define on [a, b|N|xg — 1, o + 1| the following derivable functions h and g by

n+1 f(k) (1’0)

h(t) = f(8) = f(wo) = 32—

k=1

(t — l’g)k

and

Since H,, is true, implies that

Vt € [a,bN]xo — ne, w0+ [, W ()] < g'(t)

Using the mean value theorem, we got

V€ [a, blN]zo = ne, wo + el () = h(zo)| < [g(x) = g(o)]

which means

v.CEE [a7b]m]x0_?767x0+776[7 —
|z — xo|?*T h
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so Hyyq is true.

[]

Remark 7.1. In the particular case when xy = 0, we obtain Maclaurin polynomial with

Young (Peano) form of the remainder.

i <O)x + o+ /0)

f)=fo+5 -~

" + z"e(z).
Example 7.4. f (z) = sinxz. We have

0, n =2k
(-, n=2k+1

T

sin™ (z) = sin <x + n%) . then f™(0) =sin ng = { (k e N)

Thus Maclaurin polynomial with Young (Peano) form of the remainder, takes the follow-

ing form

I 2+ .
smx:x—g—l—a—i-...—i—(—l) m—l—x e(z),z — 0.

Remark 7.2. Lagrange form of the remainder can take the form

_ JO (o + 0 (x — o))

R, — xo)"
(@) (n+1)! (z = 0)
r 2 "
Example 7.5. Letn e N,Vx € R, e* =1+ T + o +.o+ =+ R, (x), where
f(nJrl) (91,) . 6€m
Ry(z)="——"gntl— "+ g elo,1].
3 2t
Example 7.6. Let n € N,Vz € R, sinz = z + al + .+ (=) 2n g0 + Ropy1 (1),
where
in fx
Ry (1) = (1) 2220 _p2n52 g )0 1]
2+1(JI) ( ) (2n+2)!x ’ G] ’ [
IQ x?n
Example 7.7. Letn e N,Vx € R, cosz =1+ — + ...+ (-1)" + Ry, (x), where

2! (2n)!
sin Oz

Ry () = (-1)"" Gnt 1)

2?0 €10, 1].

Example 7.8. Let n € NV > =1, In(1+2) = = — Tt (—1)
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1
(n+ 1) (1+ 00

R, (z) = (=1)" "o elo, 1.

Example 7.9. Letn € N, for all x > —1,

-1 —1).. — 1
(14 z)* =1+ g +M:E2+...+a(a Joala—nt )x"—i—Rn(x),
1! 2! n!
where
—1).. —
Ry (z) = ez Dea(@mn) g g et s g ey 9]

(n+1)!

Taylor polynomial with integral reminder

Theorem 7.6. Let f : [a,b] — R be a function such that f € C™*Y ([a,b]). Fiz
xg € la,b]. Then for any = € [a,b] we have

:zn: ) (x —20)" + = / )" fOrD ()t

1 rx

Proof. By induction technique on n, and by using integration by parts on —; [* (z —

£)" fr 1 (t)dt, we conclude. O

7.2 Big O and Little o Notation-Bachmann—Landau
notation

It is often useful to talk about the rate at which some function changes as its argument
grows (or shrinks), without worrying to much about the detailed form. This is what the
O( ) and o( - ) notation lets us do. Let zp be an accumulation point of a subset D,
f:D—=R g:D—R.

Definition 7.2. We say that f is negligible compared to g or is ultimately smaller than,
when x — xy and we note f = o(g)(little o ) if :

Ve > 0,30 > 0,Va: |z —xo| <= |f(z)| <elg(x)]

Corollary 7.2. It results from definition (7.2) that if g does not vanish on xy neighbour-
hood’s then:
f:M)@%@ﬂﬁg%ﬁg
If g =1, then
f=o0l)(x = x) & xll}rgof(:c) =0

=0
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Definition 7.3. Let f and g be two functions defined on the interval [a, +oo[. we set by
definition f = o (g)(x — +00) <& Ve > 0,3JA>0,Vr: 2> A= |f (2)] < elg ()]

Definition 7.4. Let xg be an accumulation point of a subset D, f : D — R, g: D — R.
f is said to be equivalent to g, when r — xy and we note by f ~ g if f —g = o(1),

T — Xy.

Remark 7.3. IfVx € D/{xo}: g(x) #0. then f ~ g, v — o <= lim /(@)

=1.
g (v)

a

r—1 v—1
Example 7.10. lim = lim (e ) =l,y=zrha<= a*—1=zlna+o(zx),
z—0 rlna y—0 Y

r—>0<=a"—1~zxlna, x — 0.
Theorem 7.7. Letx € D/{xo} :g(xz) #0, g1(z) #0 and g ~ g1, v — x9. Then for
all function f: D — R, one has

lim (f (z) g (x)) = lim (f (z) g1 (2))

T—T0 T—T0

lim /(@) = lim f (@) .
g () g (2)

Definition 7.5. Let xg be an accumulation point of a subset D, f : D —- R, g: D — R.

We say that, g is “of the same order” as f, and they “grow at the same rate”, or “shrink
at the same rate”, we say also f is dominated by g when x — xy and we write f = O (g)
if

AM > 0,30 > 0,Vz : |z —xo| < 0= |f(z)] < M|g(2)].

If xo = 400, then f is dominated by g when x — +oo if IM > 0,3JA > 0,Vz : x >
A= |f(x)| < Mlg(2)].

Remark 7.4. [F lim /() € R (exists) then f = 0O (g) (v — xo).

T—T0 g ($)
Remark 7.5. Reminder that, the notation f = O (1) on D means that f is bounded on
D.

7.3 Limited development in a neighborhood of a point

Let I be an open interval and f: I — R be a given function.

Definition 7.6. For xy € I and n € N, we say that f admits a limited development
(exzpansion) at point xo and of order n, if there exist real numbers cy,cy,...,c, and a

function € : I — R such that lim,_,,, e(x) = 0 and so that for all x € I :

fl@)=co+ci(x—x0) + -+ cu(x —20)" + (x — 29)"€(x).

140



o o+ (T — o) + -+ cp(T — x0)" 18 called the regular or polynomial part of the

limited development.

o (z —mo)"e(x) is called the remainder of the limited development.

Taylor-Young polynomial allows us to express quickly the limited development by

setting cp = 7f(k;(!’”°) :

Proposition 7.1. Suppose that f belongs to C™ on a neighborhood of xy, then f admits
a limited development at the point xo of order n.

" " (e () (g, n n
fla) = f o) + H5 (@ — o) + 72 (= w0)? -+ L0 (2 — o)™ + ( — o) "e()

n

where lim,_,,, €(x) = 0.

Remark 7.6. 1. The next expression represents the limited development for a func-

tion f which belongs to C™ on a neighborhood of 0

x2 n

F@) = FO) + FO)z + (O 5+ + FO O +a"e(a)

2. If f admils a limited development at a point xo of order n so, it admits a limited

development for all

k <n. Indeed

/.Z'O (k) To
F@) = fla) + L0 (@ g g LD
1) (2 fi1 ") (24 . .
e e T e

where lim,_,,, n(z) = 0.
Proposition 7.2. If f admits a limited development, so, it is unique.

Proof. By contrapositive, we suppose that it admits two f : f(z) = co+ci1(x —x0)+- -+
Cn(z—20)" + (x—x0)"€1(x) and f(x) = do+di(x—x0)+- - -+ dn(x—20)" + (x — 20)"€2().

We consider the difference, we obtain
(do—co)+ (dy — 1) (x —xo) + -+ 4+ (dn — ) (. — 20)" + (x — 20)" (2(z) — €1(2)) = 0.

Replacing © = xg, we get dy — ¢g = 0. Then dividing this equality by = — zo ( or can
also proceed by derivation) we obtain (d; — ¢1) + (de — ¢2) (x — ) + - - + (dy, — ¢p) (x —
2o)" L+ (. — 29)" ! (e2(2) — €1(x)) = 0. Setting x = x¢ we deduce d; — ¢; = 0, etc. So
on we show that ¢y = dy,c; = dy,...,c, = d,,. The polynomials parts are equal, so the

remainder. O
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Corollary 7.3. If f is even (resp. odd) then the polynomial part of the limited develop-
ment is of the same parity ( which means that the limited development contains only the

even monomials resp. odd ones)).

Remark 7.7. 1. Suppose that we have the limited development of a given function
and if the function belongs to C". Then we can calculate the f*)(a) from the
relation cp = % This is due to the uniqueness of the LD and to Taylor-Young

polynomial. Worthy speaking , in the real life we do the opposite.
2. If f admits a LD at a point a to ordern > 0 then [ is continuous at a and co = f(a).

3. If f admits un LD at a point a to order n > 1, then f est derivable at a and we
have ¢y = f(a) and ¢; = f'(a). Therefore y = cy+ c1(x — a) is the tangent equation
of f at a.

4. Contrary to expectation : f can admit LD to order 2 at a point a without admitting
a second derivative at a. For example, let f(x) = 23 sin i So f is derivable but f’
is not. Despite that, f admits a LD at 0 to order 2 : f(z) = z%¢(z) (the polynomial

part is equal to zero).

Limited development of elementary (usual) funtion at origine

Taylor-Young polynomial is a very powerful tool to provide LD for smooth functions, the

following table, can testify.

e, = 22 3 o i
eXpTr =€ = +ﬁ+§+?++ﬁ+l’ e(x)
2 4 r2n
Chx:COSh$:1+§+ﬂ+"'+(zn)!+$2"+le(x)
) T $3 1'5 I,Qn—l—l —
shx:s1nhx:ﬂ+§+a+...+m+x e(z)
2 2t . rn ont1
cosx:1—§+ﬂ_...+(_1) (2n>!+x e(x)
_ x a2 2 g -
2 3 n
—1 —1)...(a— 1
(1+x)a:1+ozx—|—oz(a2')a:2+~-+a(a ) ‘(a n >x”+x”e(a:)
! n!
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1
=l—o+2> =2+ -+ (=1)"2" + 2"¢()

1+
1
1_£:1+x+xﬁk~+m”+ﬂd@
1 1-1-3-5---(2n—3
¢TIE:1+%—€g”+~4%—U”1 %m(n %ﬁ+x%@)

7.3.1 Limited development of functions at any given point

The function f admits un LD on a neighborhood of a point a if and only if the function
x +— f(z 4+ a) admits a LD on a neighborhood of 0 . Often we transform the problem

back to 0 by making the change of variables h = z — a.

Example 7.11. 1. Give the LD of f(x) =expx at 1 .
We set h = x — 1. Since z is close to 1 thus h is close to 0. So we are concerned by

a LD of exph at h = 0.
expxr =exp(l+ (x —1)) =exp(l)exp(x — 1) =eexph
h? o
=e(l+h+p+o+ o+ he(h)

- a7 ;'+"+T

:e(1+(x—1)+ +(m—1)”e(m—1))
where lim,_,; e(x — 1) = 0.

2. Express the LD of g(x) = sinx at /2.

We have sinx = sin (g +x— g) = cos (95 — g) so we are face to LD of cosh, when

£\ 21
(i e ) e —2),

—
7
[ME]
—
S
+
_l_

h=2z—7%5—0. Thus: sinz =1 — *—;

ot limy /9 € (x — g) =0.
3. Express the LD of f(z) =In(14 3z) at 1 to order 3.
We put h =2 —1, sox =1+ h. One has f(xr) = In(1 4+ 3z) = In(1 +3(1 + h)) =

n(4+3h) =In (4 (1+30)) = Ind+ln (1 + %) =Ind+3 -1 (3)7 1 1 (30)7 pde(p) =

Ind+ 3l 9 1)2 4 2 (z — 1) + (v — 1)%(z — 1) where lim,_,; e(z — 1) = 0.

7.3.2 Operations on limited developments

Sum and product

Let f and g be two functions which have limited development at 0 of order n :

f(:L‘) =co+cxr—+---+ Cnx” -I—x"el(:f) g(l’) — dO + dlfL‘ 4+ 4 dnxn +$n€2((£)
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Proposition 7.3. o f-+g admits LD at 0 to order n defined by (f + g)(x) = f(z)+
g(x) = (co+do) + (c1r +d1) v+ - + (¢ + dp) 2" + 2"€().

o fxgadmits a LD at 0to ordern as (fxg)(x) = f(z)xg(x) = T,(x)+ x"e(x) where

T, (z) is the polynomial (co + c1x + + - - + cpa™) X (do + dyx + - - - + d,2™) truncated

to order n.

Example 7.12. Calculate the LD of cosx x /1 + x at 0 to order 2.
From previous table, we have cosx = 1—32%+1%¢)(z) and /1 + & = 1+32— 122 +a?ey(x).
Therefore

1 1 1
cosx X V1+x = (1 - §x2 + x2€1(:c)) X <1 + 2z — =2+ 9(:262(:(;))

2 8
1 1 1 1 1
=1+ 2%~ gxz + 2?ey(z) — 5:1:2 (1 + 2%~ gxg + 93262(:16))
2 1 Lo, o
+x%e(x) | 1+ 3% g% + x%es(x)
1 1 1 1 1
=1+ 2%~ ng + 2?ey(z) — §x2 — Z[ES + 1—6:1:4 - 527462(23)
1 1
+ 2?ey (x) + §IE3€1(ZL‘) — §$461($) + zte (7)€ ()
1 1, 1, .
=1+ 5:1: + —gx — 53: polynomial of order 2
+ 2ley(x) — 12% + (sat — Sate () + 2ler(x) + ate (x) — sate(x) + x4€1(1’)€2(1’)1

Remainder of the form z2%e(x)

1 5
=1+ 2%~ ng + 2%€(x)

Composition

Let be
flz) =C(z) +2"1(z) = co+ 1z + - + cpa™ + "¢ (2)
g(x) = D(x) + 2"ex(x) = do + dyx + - - - + dpx" + x"€x(x)
Proposition 7.4. If g(0) = 0 (i.e dy = 0 ) then the function f o g admits a LD at

0 of order n, so that the regular part is the truncated polynomial from the composition

C(D(x)) of order n.

Example 7.13. Calculate the LD of h(x) = sin(In(1 + z)) at 0 of order 3.

One has f o g(z) = sin(ln(1 +z)) and g(0) = 0. Since the LD of order 3 according to
f(u) = sinu foru close to 0is f(u) = sinu = u———l—u 3e1(u). Setu=g(z) =In(l+x) =
[L’—§+§+$362(I) for x near 0. Then h(z) = fog(x) = f(u) —u———i—u 3e1(u) =
(z — 2% + 32°) — g%+ 2Pe(x) = v — L2® + $2% 4 23¢(2).
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Example 7.14. Let h(xz) = \/cosxz. The LD of h at 0 to order 4 is
The LD of f(u) = V1+wu at u = 0 of order 2 is of the form f(u) = /1 =
1+ ju— su? + u’e (u). Let us put u(z) = cosx — 1, thus h(z) = f(u(x)) and u(0 ) 0.
te (x).

From other hand, the Ld of u(z) at @ = 0 to order 4 is u = —32° + a* +
2

€ (x

Therefore u* = fz* + x'e (x), and so

h(z) = f(u) =1+ 1u - 1u2 + ue (u)

2 8
1 1 1 1/1
g (gt e gt -5 (3) et
1 1 1
=1- -2+ —a' — —a' +ule(u)

4 48 32

1 1
:1—1$2—%$ +u E(U)

Division
To calculate the LD of a quotient f/g, we proceed as follow. Let f(z) =co+cjz+ -+
™ + 2" (x) g(z) =do+ dix + - + dpa™ + 27ex(x) be two limited developments of

suitable functions. We consider the LD of p%u =1—u+u>—u®+---. Then we have

two cases:

1. If dy = 1, we set u = dyx + - -+ + d,x" + x"€2(x) and the quotient takes the form
flg=Fx e

2. If dy is any non null real, then we return back to the first case by considering

1 _ 1 1
9(z) ~ do14dL Lot qron

zne2<z>

3. If dy = 0, then we factorize by a suitable 2* ( smartly choose k ) to come back to

previous cases.

Example 7.15. 1. Determine the LD of tanx at 0 of order 5.
2

First of all, we recall that sinx = x — %3 + % + 2%e(x) and cosx =1 — & + gz—l—

oe(z) =1+u whereuz—%—i—%—i—x%(m). Then
1 1
= —— =1—-u+u*—u’+ue(u)
cosr 14w
N
=14+ - P
+ 5 24+ 1 + 2°€¢(x)

2

)
=1+ % + ﬂ:ﬁ + 2¢(z);
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Therefore

1
CoS T

tanx = sinx X

3 5 2 5
:<x—x6—|—1x20—|—:c e(z )) X (1—|—x2+24x4—|—a:5e(x))
3

2
=z + % + 1—5x5 + 2%¢().

2. The LD of 3¢ 1+”” at 0 of order 4 is obtained by the following way

1+ 1
= (1
24z (+)2
x\3 x\4 4
1”( 5+ (5) -G+ (5) o)
1 x 22 a: x4

=5t1 5 "5 3ol

3. Calculate the LD of ssfjc” at 0 of order 4. Indeed we proceed as follow

.732 CC4
sinx_m—g—f—l—%?-l—O(xE’) $<1—§+5+0($4))

sh x x+‘§—?—|—"§—f—|—0(m5) x(1+x3—f+x5—?+o(x4))

2 xt 1
=\l-%+—=+o0 x4>><
( 3! 5! (+) 1+%+%—|—0(x4)
z? ot
::.4—5+E+q)

Example 7.16. The limited development of 2+1i+22x to order 2 can be calculated by setting
C(x) = 242+22° and g(x) = D(z) = 1+2? thus C(z) = D(x)x (2 + x — 22%)+23(1+22).
Therefore we have Q(x) = 2+ x —22%, R(z) = 14 2x. So by diving this equality by D(x)
we obtain % =2+ 1 — 22 + 2?e(x).

Integration

let f: I — R be a function of class C" so that the LD at a € I to order n is given by
f@)y=co+alr—a)+al@—a)?+ - +ci(z—a)"+ (z—a)¢(z).

Theorem 7.8. Note F' a primitive of f. Thus F' admits a LD at a € I of order n+ 1

which can be written as

Fl) :F<a>+00(x—a)+cl<x_2a) +62($—3a)
N
n+1

where lim n(xz) = 0.
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Proof. We have F(x)—F(a) = [} f(t)dt = ag(x—a)+- - -+;25 (x—a) 4 [ (t—a)"e(t)dt.
Put n(x) = W [t —a)"e(t)dt. (Remark : € is continuous, indeed, it is by definition
continuous at a, also it is continuous outside of a since

((z) = la)n (f(x) —(cot+a(r—a)+clr—a)’+--+ culz—a)")).)

Then ()| < |y | (400" | Supyege | (1)t =

Supte az ’6( )’

But sup;¢(q . [€(t)] = 0 when 2 — a. So n(z) — 0 while z — a.

1
(z—a)nt1

Example 7.17. Calculate LD of arctanx at 0.

From previous results, we know that arctan’ x = ﬁ Put f(x) = lez and F(z) =
arctan x, we can have
1 S k, 2k
arctan’ z = = (=1)*2* + 2”"e(z).
1+a22 =
. _1)k 3 5 7
Since arctan(0) = 0 then arctanx = >}, (2k+)1 gl tle(z) = oL+ L%

The LD of arcsin x at 0 of order 5 is given by:
arcsin’z = (1 —2?%)” Po1- s (—2%) + ) (—22)” + ate(z) = 1+ La2 4 324
rle(x).

Thus arcsinz = x + ga° + 215 + 29¢(x).

7.3.3 Extended (generalized) limited development, extended lim-

ited development at infinity

Let f: Dy C R — R be a function.

1. We say that f admits an extended limited development at xq € R to order n € N if

b, by—1 by
(z —20)"  (z— xo)p_l

f(z) = +apt+ay (x — x9)+ - +a, (x — x0)"+0 ((x — 20)")

T — 2o
In the neighborhood of zy, we can define right generalized limited development and

left generalized limited development.

2. If Dy contains an interval of the form ]a, +o0[, we say that f admits an extended

limited development at +o0 of order n € N if

a  a
f(x):bpxp+bp_1xp_1+---+b1x+ao+;+w§+---++0(>

Same definition on neighborhood of —oo.
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Some applications of Limited developments

In what follows we give some important applications of limited developments

Limit calculations

Limited developments are one of the most powerful tools used to face indeterminate

forms. If f(z) =co+ c1(z —a) + - -+ then lim,_,, f(z) = c.

In(14x)—tan x—i—% sin? x

3x2sinx

Example 7.18. Find the limit at 0 of

Let us name this fraction by %

9(z)"
The limited developments at 0 are given by
f(z) =In(1+2) —tanx+%sin2x: (a:—%—i—%—
: 2
o ola) (a2 +0(s0) (1% +000) =~ o)) -

—%x‘l +o(zh)

and
g(z) = 3z%sin?x = 32?(x + o(2))? = 3z* + o (z).
f@) _ —mprtto(st) , f@ _ 5
Thus m = W. SO hmz_>0 m = —%

7.3.4 Position of a curve relative to its tangent

Proposition 7.5. Let f : I — R be a function such that its LD at a is given by

f(z) = co+ ci(x — a) + cp(x— a)f + (x — a)ke(x), where k > 2 is the smallest natural
number such that the coefficient ¢, does not vanish. Then the equation of the tangent of
the curve of f at a isy = co+ c1(x —a). The position of the curve relative to the tangent
for x close to a is determinated by the sign of f(x) —y, in other words by c(x — a)*.

Three possible cases:
1. If this sign is positive then the curve is above the tangent equation.
2. If this sign is negative then the curve is below the tangent equation.

3. If this sign changes (when going from x < a to x > a ) then the curve crosses the

tangent equation at the abscissa point a. It is an inflection point.

As the DL of f in a to order 2 is also written f(z) = f(a)+ f'(a)(z —a) + @(x—
a)?+ (z —a)%e(x), then the tangent equation is alsoy = f(a)+ f'(a)(x —a). If in addition
f"(a) # 0 then f(x)—y keeps a constant sign around a. Consequently if a is an inflection
point then f"(a) = 0. (The converse is false.)
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Example 7.19. Let f(z) = 2* — 223 + 1.

1. Determine the tangent equation at % of the curve of f and specify the position of

the curve relative to the tangent equation.

We have f'(x) = 4a® — 622, f"(x) = 122® — 12z, so " (3) = -3 # 0 et k = 2. We
deduce the LD of f at % by Taylor-Young formula
(% 2 2
RO RO R I CEDRICES BCEDE S
)P+ (o= 1) e
So the tangent equation at 1 sy = % — ( %) and the curve of f is below the
2

tangent equation since f(z) —y = (—5 + e(x ) (m % is negative round the point x = %

2. Inflection points

The inflection points are to be sought among the solutions of f"(x) = 0. So among

z=0and x=1.

o The LD at 0is f(x) = 1—223+2*. Thusy = 1 is the tangent equation at the point

of abscissa 0. Since the sign of —2x> changes, therefore 0 is an inflection point of
f.

o The LD at1 is given by f(z) = —2(x—1)+2(z—1)*+(z—1)*. Theny = —2(z—1)
is the tangent equation at the point of abscissa 1. Since 2(x — 1) changes its sign

at 1, so 1 is an inflection point too of f.

7.3.5 Limited development at +oo

Let f be a function defined on an interval I =]zq, +oco[. We say that f admits a LD at

+o00 of order n if there exist real numbers c¢g, ¢y, ..., ¢, such that

c C, 1 1
fo) ey (1)
where € ( ) goes to 0 when z — +o00.
Example 7.20.

1 1 1 1 1
f(x)—ln(2+> —ln2+ln(1+) =In2+ —— — +
x 2z

20 8x?2  24x3
1 1 1
—e€ <> , ou lim € () =0
xn €T T—00 €T

This allows us to have a fairly precise idea of the behavior of f in the neighborhood

of +00. When x — 400 then f(x) — In2, and the second term is —|— —, S0 1s positive, it

means that the function f(z) tends to In2 while remaining above In 2.
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Remark 7.8. 1. A LD at o0 is said to be called asymptotic development too.

2. A function x — f(x) admits a LD in +oc of order n is equivalent to saying that
the function x — f (%) admits a LD at 0% of order n.

3. We can define in the same way what is a LD at —

Proposition 7.6. We assume that the function x — @ admits a DL in +oo (or in

—00 ): f(x) =ao+ 2+ %+ ka (1), where k is the smallest integer > 2 such that the
coeﬁﬁczent of 2 is non-zero. Then lim,_, o f(x) — (apz + a1) =0 (resp. x — —o0 ): the
line y = apx + ay is an asymptote to the curve of f at +o00( or —oo) and the position of

the curve with respect to the asymptote is given by the sign of f(z) — vy, i.e. the sign of

ag
oF-1-

Proof. We have lim,_ o (f(2) — a0z — a1) = limy_, o0 -1 + = le( ) =0. Soy =
apx + ay is an asymptote to the curve of f. Then we calculate the difference f(z) —apz —
ay = mgﬁl + mk%le (%) = mzﬁl (1 + iE (%)) O

Example 7.21. Determine the asymptotes of f(x) = exp + - Va? — 1, if any.

1. At 400,

1
x
(1_*_1+ 1 N 1 +1 <1)) (1 1 +1 <1))
= — 4+ — 4+ —¢ — 4+ —€| -
222 63 T 202 3 \z

So the asymptote of f at +00 isy = x+1. Since f(x) —x—1 = —55+ € (2) when

xr — 400, the curve of f remains below the asymptote.

2. At —oo0. @:exp%-i”i_l:—exp%-«/l—x%:—1—%#—%%—%6(%). So
y = —x — 1 is an asymptote of f at —oo. We have f(z) +x +1 = 555 + e (1)

T

when x — —o0; The curve of f remains above the asymptote.
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CHAPTER

INDEFINITE INTEGRALS

Introduction

In this chapter, our main goal is to introduce the basic concepts in integral calculus where
we present the different techniques of integration which will be useful tool to carry on for

example with definite integrals and the differential equations.

8.1 indefinite integrals

Definition 8.1. Let f be a function of a closed interval [a,b] in R and let F be a differ-
entiable function on |a,b]. F is said to be primitive of f on [a,b] if
Vo € [a,b], F'(z) = f().

Proposition 8.1. If F' and G are two primitives of f on [a,b], then
F—-G=cceR.

Proof. Indeed, we have (F — G)'(z) = F'(z) — G'(x) = 0,Vx € [a,b] then FF — G is a

constant function on [a, b]. O

Example 8.1. The functions F and G defined on [1,2] by F(x) = Inx and G(z) =

Inz + a, with a € R are two primitives of the function f(z) =1 on [1,2].
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Definition 8.2. The set of all primitives of the function f : [a,b] — R is called the
indefinite integral of f, denoted [ f(x)dx, then if F is a primitive of f on |a,b], we have
/f(x)dx = F(z)+c,ceR.

Example 8.2. Vz € [1,2]: [1dz =Inz+c,ceR

Remark 8.1. A function f admitting a primitive on [a,b], is not necessarily continuous

on la,bl.
Example 8.3. Let be the function f defined by
2zsinl —cos2, siz €]0,1]

f(a:):{ 0, stx =0

f admits as a primitive on [0, 1] the function F defined by

2sind,  siz €]0,1
F(x) _ r7sm - $1 T ] ] | since F,(l‘) :f(x),Va: c [O, 1]'
0, stz =20

while [ is discontinuous at x = 0.

Proposition 8.2. Let f and g be two functions which admit two primitives on [a,b], then

f+ g and af where a € R admit primitives and we have

L J(f + g)@)da = [[f (@) + g(a)ldx = [ f(x)dx + | glx)dz.
2. [(af)(z)dz = [ af(z)dr = o[ f(z)dz.
3. (f f(z)dz) = f(z).
b [ f(@)dz = f(z) +c.c € R.
Proof. Just do it. O

Proposition 8.3. Let [a,b] be an interval, and f : [a,b] — R a function defined on
the interval [a,b]. If f is a continuous function on the interval [a,b], then f admits a
primitive F' defined for all x € [a,b] by F(x) = [ f(t)dt.

In this case, F' is the unique primitive of f which vanishes at a. This result is known
as the Fundamental Theorem of calculus. But this is not the true fundamental theorem
of calculus (this is a corollary), see Riemann integral. Thus, it suffices that a function be

continuous on an interval for it to admit a primitive on this one.
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Primitive functions of elementary functions

22 !

/adx:ax+c, /xdx:——l—c, /xmdx: +c meN
2 m+1

dx 1

- 0

N zott dx
/x dex = +1—i-c aeQ—(-1), /x Injz|+¢ z#0

—\/_+c x#0

«
T

/e’”dx:ez—i-c,if a>0 anda#1, /axdaj:a

+c r#kr keZ
Ina

/Sinxdx:—cosx+c /cosmdmzsinx—l—c

/ 5 _/ + tan? x)dx—tanx—l—c keZ, /
cos

/shxda::chx—l—c, /chxdx:shx+c

= —cotanx + ¢
sin? x

d
/thxdw=ln(chx)+c, h;[ :/(l—thQ:p)dx:thx—kc
ch”x
in 2 in 2
/COSQ:Ed:E:g+Sln4x c, /Sin2$dx:§—sm4x+c x;&g%—kwandeZ

/tanxdaz‘: —In|cosz| + ¢, /lnxd:c:xlnx—x—i-c, x>0

/dx 1n)tan<2)‘+c r# 2k+1)r and k €Z

S T

/dx :ln‘tan<£+z>‘+c x#z+2k7r and k €7
CcoS X 2 4 2
dx 1 ‘14—9&

1—x2:§1n — +c |x|#1 ( or argthx if xz€]—1,1]

f\/%:ArcsinX:—Arccosx—l—c lz] <1

119;2 = arctanx + ¢
f\/;g%—ln‘x—l—\/:ﬂ ‘—irc (or argshx )
ln‘x—i-\/ﬂ ’—l—c |z] > 1 (orargchx if z > 1)

fm—ln‘as—i—\/x? ‘+c 24 h>0
fdx ln|th( )‘+c r>0 or x<0

th—m = 2 Arctan (e%) + ¢

L —In|shz|+¢c >0 or z<0
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8.2 Methods for computing primitive functions

8.2.1 Integration by parts -IBP- or Integration per partes - IPP

Theorem 8.1. Let u and v be two derivable functions of class C* on [a,b]; then :

/u’(x)v(x)dx = u(z)v(z) — /u(:n)v’(a:)da:
Proof. Indeed
u(z)v(z) = /[u(az)v(az)]’d:ﬁ = /u’(x)v(x)dx - /u(a:)v’(x)dx.

[]

Remark 8.2. 1. Sometimes, we have to apply IPP method more than one’s time to

solve the problem.

2. We can also use differentials of functions as follow
/udv:uv—/vdu

Examples 8.1. 1. [} = [ze®dx

U=z du = dz
IPP : =
dv = e*dx v=e"

thus I} = xe® — [e"dx = e*(x — 1) + ¢,c € R.

such that df = f'(z)dx

2. I, = [arctan xzdx

PP - { u = arctanx N { du = 1+1x2d:c

dv = dx V=21
so I = varctanz — [ -5 5dv = varctanz — sIn(1+2?) +cceR.

3. Iy = [(Inx)*dr

u = (Inz)? du = 2% dy
IPP1: = v

dv = dx v=u=
therefore Iy = x(Inx)? — 2 [Inxdr = z(Inx)? — 2J

u=Inzx du = Ldx
IPP 2 : = r

dv = dx V=1
then J =xlnz — [dr=z(lnx — 1) +¢,c € R.
so Iy =xz(Inz)?> —2z(lnx — 1)+, €R.
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4. Iy = [ e*cosxdx

u = ev du = e*dx
IPP1: =
dv = cos xdx v =sinc

so Iy =e"sinx — [e*sinxdr = e*sinx — J

u=-e" du = e*dx
IPP2: =
dv = sin zdx U= —CoST
we get J = —e*cosx + [ e cosxdr = —e*cosx + Iy + ¢,c € R.

then I, = e*sinx +e*cose — Iy —c & Iy = %[Sinaz—i-cos:c] +d,d eR.

Example 8.4. [ = [ (2° — 1) e®dx
u=22-1 du = 2xdx
PP =

dv = e*dx v ="

30[:(332—1)65”—2/956%:5

u=2x du = dx
=
dv = e*dx v=e"
then /xexdx:xez—/exdx:ex(x— 1)+cceR

thus I = (2% —1)e® —2e“(x — 1) + ¢, € R.

8.2.2 Change of variables - CV -

In mathematics, a change of variables is a basic technique used to simplify problems in
which the original variables are replaced with functions of other variables. The intent is
that when expressed in new variables, the problem may become simpler, or equivalent to
a better understood problem.

Change of variables is an operation that is related to substitution. However these
are different operations, as can be seen when considering differentiation (chain rule) or

integration (integration by substitution).

Theorem 8.2. Let f: [a,b] — R be a continuous function on |a,b] and let ¢ : [a, 5] —
[a,b] be a derivable function of class C' on [a,b], such that o([a, B]) C [a,b] then

[ f@ydz = [ fee)¢ 0t

By the change of variables, we conclude.

r = (t) = do = ¢'(t)dt.
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The following table gives us a summary of some well known cases
If a # 0, then one has:

[ f'(ax +b)dx = L f(az +b) + ¢
f(aa:—l—b)adx:%%—f—c a#—-1 (ax+b#0sia<0)
A= Llnjax +bl+c¢ ar+b#0

more general cases

J FTu(@)]u(z)de = flu(z)] + ¢

[u(z)]*/ (z)dx = % +c a#-1 (u(z)#0sia<0)

[ Z((f))dx =In|u(x)|+c¢ u(x)#0

12 f(x)de = [ flo(t)]¢'(t)dt  with ¢ monotone and differentiable on[t,,#,] and
a=¢(ta),b= 0 (ts)

Example 8.5. 1.
I, = [cosx - ™%y
CV :t =sinx = dt = cosxdx, we get
I, = [eldt =e' +c,c€R, s0 I} =% 4 ¢,c € R.

2. Ingﬁdl’

CV :t=¢e"=dt =e"dx, thus
L= t;ﬁl = arctant + ¢, c € R, therefore I, = arctan (e*) + ¢, c € R.

3. Iy = [ ueilzgy

CV :t=arcsinz = dt = ﬁdw, S0

Iy = [#3dt = {t* + ¢, c € R then I3 = }(arcsinz)* + ¢,c € R.

1
4

Integrals involving quadratic expressions

Calculate I; = [

Step 1: We transform the denominator by putting it in the canonical form i.e, the

< +b>2+4ac—62
v 2a 4a? ’

___ar
ax?+bx+tc

sum or the difference of two squares

ar’ +br+c=a

Let % = +M?2, then

ar’® +br+c=




Thus I; takes the following form

7 _/ dx 1 / dx
S S aflrg) 0] oM (3]

Step 2: By the change of variables

2ax +b dzx
= dt = — & dx = Mdt
R TR
we get
[_1/dt
YTaM ) 2+l
SO :

1% Case : If I, = ﬁ / tﬁil then

1
I, = —arctant +c,c € R

aM
therefore
1 2 b
Ilzaj\/[arctan( ;z]\—; >+c,c€R
24 Case : If I} = & [ % then
1 t—1
I, = In|—— R
! 2aMn’t+1‘+C’C€
SO
1 2ar +b — 2aM
I, = ,ceR
YT aM o 2ax + b+ 2aM toc
Examples 8.2. 1. I:fmhflﬁJr5
One has
P42 +5=(x4+1)2—-1+5=(z+1)>+4,
50

dx dx 1 dx
1= s st
2242 +5 (x+1)2+4  4J (=) 41

The change of variable

= dt = ;dx<:>dx = 2dt,
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permits us to calculate

1 2dt 1
I = 171 2/t2 arctant+c ceR.
therefore
1 1
Izzarctan(x;— )—l—c, c e R.

. Calculate Iy = [ Mg‘ﬂf+cdx

Stepl : Derivation of the denominator (ax? + bx + c) = 2ax +b.

Step2: We rewrite the numerator according to the derivative of the denominator.

ax+5=a<x+§) :;;<2ax+2?j+b—b)

SO

a$+ﬁ—;;[(2ax+b)+225—b}

then we replace in I

2 b) + (22 —p
2a ax? + bx + ¢

_g/ (2ax+b) (6 )/ dx

" 2a ax2+bx+c 2a ar? 4+ bxr + ¢’
hen ;

I, = —ln‘aaz —i—bx—l—c} + (ﬁ—a> I
2a

where I; has been calculated above.
Example 8.6. [ = f(g’mixfldx
Using the above technique, we have

/ 2r — 1) / 2 — 1) - 1/ dx

2 x2—x—|—1 2 x2—x—|—1 2) 22 —x+1

50

3 1
I:§ln(x2—x+1)+§J

where p
€T
J:/i
2 —x+1
thus
2 2r — 1
J = —= arctan () +c ceR.
V3 V3
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and

3 1 2¢ — 1
I:2ln(x2—:v+1)+arctan(x >+c, ceR

V3 V3

. Calculate I3 = [ ﬁ

We transform the ax® + bx + ¢ by putting it in the canonical form i.e, the sum or

the difference of two squares, then we proceed by the same change of variables,

2ax + b dx
= 57 :>dt_M<:>dx_Mdt

CV:t¢

to obtain one the two following possible integrals

{I;;zf\/]%, where t> —1 >0 ifa >0

Ing\/%, where 1 —t2 >0 ifa <0

Case number 1 : If I3 = then

dt
f /t2+17
I3 = argsht +c,c e R.

Case number2 : If I3 = [ and t* — 1> 0, then

dt
Vi2—1

I3 =argcht 4+ c,c € R.

Case number 3 : :If Is = [ \/% and 1 —t2 >0, then

I3 = arcsint+c¢, c&€R.

Example 8.7. Calculate a primitive of [ = [ \/m;fiw—l-l' Let

1\ 1 1\?
x2+x+1:<m+> —+1:<x+2) +

3
2) T 1 1

we obtain

I:/ dx :/ dx :2/ dr

2x+1:>dt:2dx<:>d:c:\é§dt

V3 V3

CV:t=
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SO

dt
I:/ =argsht+c,c € R,
Vit 41 &

2 1
Izargsh( Tt

\/§>+C,C€R.

. Calculate Iy = [ %@ﬂdm‘

Step 1: We derivate (az® + bx + ¢)' = 2ax +b.

Step 2: We rewrite the numerator with respect to the derivative, as did while calcu-

lating 15,

ax+ﬂ:20;[(2ax+b)+2(jf—b}

then we replace in I,

I, a/(Zax+b)+(2aﬁ—b

= — = )daj
2a var?+b+c

a (2ax +b)

A (-8 [
2 ar?+bxr+c 2a ar?+bxr+c

« (2ax + b) < ba)
= — de+ |\ —— | I
2a ) vaxr?+bxr+c v & 2a) "

for the first primitive, the following change of variable suffices

t = az® + bx 4 ¢ = dt = (2ax + b)dx
thus

(2ax + b) dt
dr= | —= =Vt+kkeR
/2\/ax2+bx—|—c v 2/t

=vVar’+br+c+kkeR.

SO

b
h_avmﬁ+m+c+0%—a>h
a 2a
where I3 is above.

Example 8.8. Give a primitive of [ = [ %ﬁixzdm. We remark, that

(10 + 4z + 2?)" = 22 + 4
3 5 6
5 3:5( ):(2 b 4—4)
x4+ x+5 5 :U—|—5+

160



SO

27 +4) — i 27 + 4
_]:é (2z+4) 5d:v:§ (22 +4) dx—?/ d
2J V10 + 4x + 22 2J V10 + 4x + 22 V10 + 4z + 22
for the first integral, we consider
t =10+ 4z + 2% = dt = 2z + 4)dx
then (2 + 4) "
T+
dr = | — =Vt+c,c €R,
/2\/10—1—4x+x2 2/t b

=V10+4x + 22+ ¢, €R

for the second integral, we factorize 10 + 4x + x*
10 +4r +2° = (2 +2)*+6

than we replace in the integral

/ dx :/ dx :1/ dx

the change of variable t = x—+62 = dt = %dx & dr = /6dt

N
grves
/ d / at ht+caco €R
= [ —= = args Co, C
Viotdera2 Jver1 UF o
therefore

2
I =5V10 + 4x + 22 — Targsh (x\—/%) + ¢, where ¢ = ¢1 + cs.

8.2.3 Integration of rational functions

Definition 8.3. Recall that a rational function is a ratio of two polynomials P and Q

e f(x)= ggz), which is well defined for all x of R such that Q(x) # 0.

In order to integrate f(z) = SEB, we should distinguish two cases

15 Case : if d°P > d°Q (where d° is the order), then we establish an euclidean division

relative to decreasing powers of z, indeed

Px) = Q(x) - S(x) + R(x),

where S(x) and R(z) are two polynomials such that d°R < d°Q), then
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254 case: if d°P < d°Q), to integrate a proper rational function, we can apply the
method of partial fractions. This method allows to turn the integral of a complicated
rational function into the sum of integrals of simpler functions. The denominators of the
partial fractions can contain nonrepeated linear factors, repeated linear factors, nonre-
peated irreducible quadratic factors, and repeated irreducible quadratic factors.

To evaluate integrals of partial fractions, we use the following formulas:

Decomposition of rational functions to partial fractions

In order to integrate a rational function, it is reduced to a proper rational function. The
method in which the integrand is expressed as the sum of simpler rational functions is
known as decomposition into partial fractions. We decompose the function f according
to the denominator. Steps for Decomposing a Rational Function of the Appropriate Type
Into a Sum of Ratios

Step 1: Factor the denominator if necessary.

Step 2: Create a sum of rational terms for each factor, using different variables for
each numerator.

Step 3: Multiply by the LCD to clear the fractions.

Step 4: Solve for the undetermined coefficients.

Step 5: Substitute the solved coefficients into the sum of ratios. Worthy speaking, we

proceed as follow
o If
Qz)=(r—a1)(x —ag)...(x—a,),
where a; € R,Vi =1, ..,n, then

Q) w—a w—a = r—a,

flx) =
such that A;, ¢ = 1,..,n are real constants to find.

o If
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where a; € R,m; € N*,Vi =1, .., n, then

Plz) _ Al + A + ..+ A + 45 + 45 + ..+
Q) |z—ar (z—a)® = (z—a)™ t—ay (z—ay)’  (v—a
A? A? A?
]
[x—an (z — an)” (x — ay) "]
such that A{, 1=1,...,nand j =1,..., m; are real constants to determine.
o If

Q(z) = (2® + biz + 1) (¥ + boz + ¢2) ... (27 + by + ¢)

where b;,¢; € R and b? — 4¢; < 0,Vi = 1,...,n then

P(.Z') . Al.’L' + Bl AQ.Z' + BQ An.’L' + Bn
Qz) 224+bx+c  22+bar+c 22 +batc,
such that A;, B; are real constants to determine, for all i =1,... n. - If

2

Qz) = (2 + bz +c)" (2P +br+ce)” .. (2 +ba+c)"

where b;, ¢; € R and b7 — 4¢; < 0,m; € N*, Vi = 1,..,n, then

P(z) | Ajz+ B Alx + B} A"z + B
Qz) |224+biz+a  (2+br+e) (@ +bhr+a)™
Az + Bl A3z + B3 A2z + By®
B + 5+ ..+ 3 3
T2+ byr + o (22 4 ber + ) (22 + bow + )
Alx+ B} A’x + B? - Amng + BI'n
2+ brt+c  (2+ba4e) T (@b +c)™
such that A{ are real constant to determine for all ¢ =1,...,nand j =1,..,m,.

Examples 8.3. Decompose the following functions into a sum of ratios.

1. f(z) = a:?f;j+2'
We have, ©? — 3z + 2 = (z — 1)(z — 2), then

r+3 A B

J@) == -1 22 ta-1

basic calculations give

r—+3 5 4

(z—2)(x—1) -2 x—1
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_ 5—x
2 f(2) = Grrnem:
Remark that x* — 4z + 4 = (v — 2)%, so we have

b—ux A B C
I = ) " r—2 T Go2 Tt

identification method for example allows us to rewrite it under the form

5—ux > (A+C)+ax(—A+ B—4C) —2A+ B+4C

(x —2)%2(x+1) (x —2)%(x+1)

resolving the system below

A+C=0
A+ B—4C = -1
—2A+ B+4C =5

gives us

S5—x -2 1 2

@—22@+1) B3@=2)  (x—27 3@+l)

2

3. f(2) = ey
The discriminant A of x> + x + 1 is negative, then

x? A Bx +C

f(x):($2+:E+1)(1:—1):x—1+x2+$+1

by identification method, we get

x? 2 (A+B)+2(A-B+C)+A-C

(2+zx+1)(x—1) (2 +2+1)(x—1)

then by solving the system below

A+B=1
A-B+C=0
A-C=0
we get
x? 1 2z 41

@ra+0)(@-1 3@-1) 3@+a+1)

— 4235
4- f(l') T (22-3z+5)(—2242—-2) "
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The discriminant of (z* — 3z +5) and (—z* + x — 2) are negatives, so we have

fa) = 43 —5 Az +B N Cx+D
(@2 —-324+5) (22 +2x—2) 22-3x+5 —a2+z—2

th676107€
3 5 3 3 11 5

(22 =3z +5)(—22+ax—1) 22—z+1 22—-3z+5

_ 2251
5. flx) = (22?—a 1) (22 4+1)2

(@) 225 — 1 Ax+ B +C$+D Ex+ F
xr) = =
222 —a+1)(22+1)° 222—z+1 2241  (2241)°
therefore
3 5 3 1 1 3

(2x2—a:+1)(x2—|—1)2:2x2—a:+1_(x2+1)2 2241

Integration rational functions

For the integration of the rational functions f(x) = ggg, we therefore need to integrate

the simple elements of 15 and 2" types.

Integration of ratios of 15 type ﬁ,l € N*

e Ifl=1then [-2Adr=Aln|r—a|+c,ceR

-

. Ifl>1thenfﬁdx:ffl(x—a)_ldx:A(x%_)l“—i-c,ceR.

Integration of ratios of 2" type %, k inN* with p? —4g < 0 . We factorize

the polynomial 22 4 px + ¢ in the form of the sum of two squares because p? — 4q < 0, so

we have , )
2 — E) _r
r*+pr+q (x—l— 9 1 +q
(e )t
- (“”L 2) T
set £ = —a and # = /32, therefore

?Hpr+q=(r—a)P+ps

than replace

Mz+N  Mz+N
(@2 +pr+q)" (v —a)+pY
Mx+ N

g [(%)2 + 1]k
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the change of variable

t= x;a S =pt+a=dr=[dt
transforms the above integral to
/ Mz + N dp — 1 /]\/[(Bt+oz)—|—th
(22 +pr+ ) R 2 4+ 1)
M / t Mo+ N 1
— dt + / dt
g2 ) e ) gt e
therefore the integration of the rations of 2" type: % is reduced by the change

of variables z = [t + « to the calculation of two primitives that we denote by:

1
I, :/tkdt and Jj, :/ﬁdt
[t2 + 1] [t2 + 1]
Calculation of I}, :

e Ifk=1thenl, = [i-dt=L1In(t?>+1)+c,ceR.

t2+1 2

e If £ > 1, so by the mean of the change of variable u? = > + 1 = 2udu = 2tdt, we

get
B t B U _ ok B u?—?k‘
Ik—/[t2+1]kdt—/WdU—/u du-2_2k+c,c€R.
thus
I L + ! + eR
=—————+c= ¢, c
FT(1 — k)uzk-? 20— k) (2 + 1)

Calculation of J, :

o If k=1then J; = [ mqdt = arctant + ¢,c € R

o If £ > 1, so we integrate by parts, and we get

v=t

—k—1
dv = dt

SO
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ﬁ+1—1
Je = k +2 / k+1

Jpy = —— + 2kJ,. — 2kJ
k [t2 I 1]k k k+1

then an induction formulas arise, which completes the calculations.

1

t
Jop1 = |—— + 2k —-1)Ji| .k eN"E>2.
k+1 2%k [[tQ—i—l]k ( ) k]

Examples 8.4. Integrate the following :
x2

Remark that

SO
2 2

T T
1—1:/3:3—1dx:/(33—1)(95'2—4—364—1)amj

I/{A +Bx+0}d
1= r—1 224+x+1 v

then

where A, B and C are real constants

x? A n Bx +C
(z—1)(z24+z+1) z-1 22+x+1

elementary calculations give
/ / 20 +1
x— 1 4+ 1
=3 [ln|x— 4+ (z*+z+1)] +cceR,

zéln}x3—1|+c,c€R.

I3

By factorization the rations, we get

I_/ A BrtC DitE
2T a1 24 (224 4)

where A, B,C, D and E are real constants, then we have
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a3 A +Bx—|—C’+D:c—|—E
(x4+1)(22+4)° z+1 22+4  (22+4)°

for example , by identification we have

(

A+B=0
B+C=1
8A+4B+C+D =0
4B+4C+D+E =0
16A4+4C+E=0

resolving this system, gives

—1 1 24 —4 —16
A:77B 70_7’D:77E:7
25 25’ 25 5 5
S0
-1 dx x+24 T+ 4
I, = — / —dx
%) er1 % x2+4 (22 +4)
finally
:10—1—24
1 24/ 1
/x2+4 2/ T v
l
—ln x°+4 +12/#d:c
pn )’ +1
1
5111(95 +4)+12arctan(2)+cl,01€R.
and
4 1 2 1
/de:/%dx+4/2dx
@+ T 2) @) (22 + 1)
1
= _K+4L
2 +
where
K:/i / = —|—c,c e R.
91;2—1—4 2, C2
1
= $2+4+627 CQER
and
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1 1 1
L / (22 +4)* 16/ ((%)2+1)2

1 1 1
:8/[tz+1]2dt28j2702€R, avecleC’V:t:§

a suitable change of variable, gives

1 t 1 t
jQZ{ +J}:{+arctant]+63,03€R,

2le2+1 "7 T2l
thus
1{ ! + arct t}—l— eR
= — | =—— + arctan 3, C
16 [#2 4+ 1 5
and
! { 2T aret x}+ eR
= — | —— +arctan —| + c3,¢
16 L2 + 4 2] T
therefore,
T +4 1 1] 2z x}
——dr = — - tan — ,c3 €R,
/(:p2+4)2 ST r=rwy RS P ] I
and, we conclude
-1 1 7 x  2(1-ux)
I =—1 1|+ —1In(2?4+4) + —arctan= + ——— +¢,c € R.
2= 5 nlr+ |+5On(x+)+25arcan2+5(x2+4)+cc

8.2.4 Integration of irrational functions
Primitives of type [ R (m, x%, Tw, ... ,x§> dx

To calculate this type of primitive, we first calculate a the least common multiple of

denominators of the fractions ¥ ™ ... T ie.: a = LCM(l,n,...,s), then we make the

12 n? )50

change of variables

r=1t%= dr = at® 'dt

1
Examples 8.5. 1. Fxpress the primitive : [ = [ %Lxldx = [ 2 dx
x4+ x

141
We have a = LCM(2,4) = 4, the by the change of variable

r=t"= dr = 43dt
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SO

t5
1:4/7(#
3 +1

and then
I = 4/ t* — } = In|t*+1|] +¢,ceR
4[372— 1H+cc€R
3
Primitives of type [ R (:c, <?§i§)% : (Z;cjrrs)% o (Zfis)r) dx

To calculate this type of pm’mitive we first calculate o least common multiple of

k L o ge.:

denominators of the fractions 7, ... =
TL S

a=LCM(L,n,...,s), then we make the change of variables

ar +b
cr +d

_ 4

Example 8.9. The primitive of [ = [ V” de = [ mJ:f)Q dz
We have o = 2, the CV
T +4 =1t = dr = 2tdt

transforms to

CEE L /(t2—4)+4 B U / dt]
1= [ ar =2 [ S a2 | a5

t—2
2[t+ln }—I—c,ceR,
t+2

vVr+4+In \/—+§']+C,CER.

Primitives of type [ R (x, Vax? + br + c) dr,a #0

For this type of primitives we can use Fuler Substitutions, where we distinguish two

cases

15t Case If a > 0 then we make a change of variables by setting

Vax? +bx +c=+ax +t
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by making any choice of the sign before the root. Suppose that we choose the sign +
for the rest of the calculations, then the square of the two sides of the last equation,

we get

ar® + bx + ¢ = az? + t* + 2/axt

which is equivalent to

2 —c
r=-———.
b—2y/at
Example 8.10. I = | \/T
One has a =1 > 0, the we set
Val+9=ao+t
so
9 —¢t?
P4+ 9=+ t+t o x = o7
therefore
—2t —(9—+¢2
e - (9-)2
4t2
—2t* — 18 —t*—9
= ——dt = dt
4t2 2t2
and
9+ 2
Va2 +9= +
2t
we replace in I and we obtain
1 r(9—1¢2 1 781 —182 +¢!
Sy Gt Loy
4 t3
1 dt
:—{ 18/ +/tdt}
4
1 81 t2 }
=— 181 R.
4{%2 8In|t| + | +c,ce

thus
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- _1 —81 _ 310 2,9 5
I'=—y 2(222+9—22V27+9) 8In|vVa?+9 -zl +2°+ 5 —ava*+ 9| +¢,ceR

2nd (Case

If a < 0 and the discriminant A of the polynomial ax® + bx + ¢ is positive, i.e,
A > 0 therefore the polynomial ax® + bx + ¢ admits two distinct real roots o and 3,
such that

az® + bz +c = a(z — a)(x — )

and in this case, we make another change of variables where we set
Vax? +bxr+c=(z—a)t

here we can choose one of the two roots found either o or [3, then we square the

two sides of the equation
Vax? +bxr+c=(z—a)t

while replacing the polynomial by its factorized form
azx® + bz +c = a(zr — a)(r — B)

from where

which is equivalent to

af — at?
a(z — f) :(x—a)t2<:>x:ﬁ.
Remark 8.3. If the discriminant A of the polynomial ax® + bx + ¢ is null, and if
the sign of a is positive, so the polynomial ax® + bx + ¢ admits a double real root o
and we have

ar® + br + c = a(x — a)?

thus

Vaz? +bxr + ¢ = Valr — a.

Example 8.11. [ = [ 2z — 2%dx
A>0=2r—2>=2(2-1), we have « = 0 and B = oY Vor—a? =t &

©(2 —x) = 2°° & x = F25 then
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—4t
dr = ————=dt et V2r — 22 = ,
(t2+1) 2+ 1

SO

t? + 1—1
I=-8[—sdt=—
[@emt=3 Gy
dt
[=-8) ——=+8 ] ——
/kﬁ+1) /k#+u
I =—-8Jy+4+8J3

where Jy et J3 are defined before

1 t t 3
J3 == +3) | = + —J
i 4(@1+n2 2) A2+ 1)2 47
thus
1 8Jo + 8J. 2t 2Jy + eR
=— = — ¢, ¢ .
TR ) 7
and
2t
2t tant + eR
= — —arctant + ¢, ¢ :
t2+1)° +1
where t = 7%_”32, therefore
Jor — 12 9 — 22
= #(m—l)—amtan#—kc,ceﬂ{.
x

Remark 8.4. If ¢ > 0, then there exists an Euler substitution
Vax? +bx +c=atE£+/c

there also the sign before the root remains at your choice, then we put the two sides

of the equation

Var? +br +c=xt ++/c

squared, from where

az? 4+ bx + ¢ = t22? + ¢ + 2\/cat
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which is equivalent to

2 —c
r=-——.
b—2y/at

dx

Example 8.12. [ = Ry e

c=1>0L Vel —rrl=at+1

=2t —r+1=(at+1) =242t +1
_ a4l 2t +t+1)

= r = = dx =
TTioe T T T ey

+t+1
and VE—z3i1- i+l

1—1t2
S0
dt 1
1:/7:71 2 + 1 R.
T 1 2n| +1|+ccce
1
]=§1n|2t+1’+C,CER.
therefore

2V x? — 1 -1
vty +c,ceR.
x

1
I==-1In
2

8.2.5 Integration of trigonometric functions

Primitives du type [ R(sinz, cos z)dz

There are several cases

Primitives of type [ R(cosz)sin zdz
In this case we put t = cosz, so dt = — sin xdx
Primitives of type [ R(sinx) cos xdx

We use the change of variable ¢ = sin x, thus dt = cos xdx

Examples 8.6. 1. I =/ cosT T ]

sin® x

CV :t=sinz = dt = cosxdx, then

42
o [




SO

1 1
I =— —— T = +c,c€R.
3sin®z  sinx

Primitives du type [ R(sinz,cosz)dx

The change of variable t = tan 7, gives

xr = 2arctant then de = ——dt
1+ ¢2
and
T T T T tan
sing =2sin=cos= =2tan = cos®’ = =2——— 2
272 2 2 tan’f+1
because
.9 X o T 0 T 1 0 T 1
—tcos"—=1ltan " —+1l=—&cos" == —————
St 2+ 2 . 2+ COSQ% © 2 tan2%+1
therefore
) 2t
sing =
t2+1
and
2 x
0 T .9 X 295( 21;) l—tan§
COST = COS 5 sin 5 cos 5 an 5 1—|—tan2§
thus
1 —¢?
cos T = .
1+

Example 8.13. [ = [ &

sin x

_2
1442

2t

dt, and we have sinx =

CV:tztan%@szarc‘cantidw:

SO dt
1:2/€<:mmﬂ+qceR

:2ln‘tan§’+c,c€R.
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Primitives du type [ R(tanz)dz

If the function to be integrated depends only on the tangent then we make the change

of variables t = tanx, hence x = arctant and therefore do = 1Jr%ahf.

Example 8.14. [ = [tg*xdx

CV:t=tanz & x = arctant = dx = dt

142

then

t2
I:/ dt
1+¢2

+1) -1
:/‘ T

1
:/ﬁ—/——wt
1+¢2
=t —arctant 4+ c,c € R.

SO

I =tanz —xz+c,ceR.

Primitives du type [ R (sin” x, cosF x) dx

n and k are two natural numbers. We suppose that they are even, in this case, we

use

1
sin?z = 5(1 — cos 2z),

1
cos’ T = 5(1 + cos 2x).

Indeed, cos2x = 1 — 2sin?x = 2cos?x — 1. We can also use the following change

1

Tz dt, one has

of variable t = tanx, then x = arctant and therefore dx =

1
1+tan?az 142

COS2 Tr =

and

t2
1+t

sinz=1—cos’z =

Examples 8.7. [ = [sin* zdx

We have sin® z = $(1 — cos 2z), then
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1 1
I= 1 /(1 — cos 2z)%dr = Z/ [1 — 2cos 2z + (cos2z)?] dx

1
=7 |:I — sin 2z + /(cos 2x)2dat}

but, (cos2z)? = 1(1 + cos4dx), so

1 1 1
/(cos 27)%dr = 5 /(1 + cosdx)dr = = (m + 1 sin 4x> +c,ceR.

2
thus
]—1[ '2+1<+1'4)}+ eR
=4 |F—sin2z+ | x4 sinds c,c .
therefore,
3 1 1
[:ix—isin2x+§sin4x+c,c€R
I:fcoczx
1 2 1 ! \
CV :t=tanz & x = arctant = dr = dt et on acosx = ——,d ou
1+¢2 1+1¢2

3
[:/(1—|—t2)dt:t—|—t3—|—c

(tanz)?
3

=tanzx + +c,ceR.

Primitives [ cos kx cosnxdz, [ sin kx cosnxdzx, [ sin kx sin nzdx

For this kind of primitives, we use the well known trigonometric formulas

cos(a+b) = cosacosb — sinasinb
cos(a — b) = cosacosb + sinasinb

sin(a — b) = cosasinb — sinacosb

to have the following transformations

1

coskx - cosnx = 5[(308(]{ + n)x + cos(k — n)x]
1

sin kz - cosnx = =[cos(k + n)z + sin(k — n)zx|

1
sin kx - sinnx = 5[— cos(k + n)x + cos(k — n)z]
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Example 8.15. I = [sin bz - sin 3xdz.

We apply the formula

1
sin 5z - sin 3z = 5[— cos 8z + cos 2]

from where
1
=3 / cos 8% + cos 2z|dx
1
=1 { 1 sin8x +sin2x| + ¢, c € R.

8.2.6 Integration of certain irrational functions by the mean

of trigonometric transformations

We consider primitives of the type [ R (:1:, Vax? + b + c) dx, with a # 0,az?*+
br +c¢ >0, and A # 0.

We start by rewriting it under canonical decomposition,

< +b>2+4ac—b2
v 2a 4a? ’

then we make the change of variables t = x + 5>, so dt = dx and from there we

ax’+br+c=a

come back to one of the following three forms:

e [R (t, Vn?t? + k:2) dt where we make the change of variables t = E tan z.

e [R (t Vn2t? — k:2) dt, such that n*t> — k* > 0, where we make the change of
k

nsinz’

variables t =

« [R(t,VE?>— n2t2) dt, such as k* — n?t> > 0, where we make the change of

variables t = sm z.

Example 8.16. [ = |
We have

dx
V(—z2—23)%"

—*—2r=—[(z+1)? -1 =1—(z+1)

the change of variables t = x + 1, gives dt = dx from where we get
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dt

A second change of variables t = sin z = dt = cos zdz, so

d
I:/ : =tanz+c,ceR.

cos2z
but
¢ sin z t
anz = =
cosz 1 —1t2
thus
I t +
= c
V1—t2
therefore
1
="t LiceRr
—22 — 2
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CHAPTER

DEFINITE INTEGRALS

9.1 The Riemann Integral

Now, we give the definition of the Riemann integral of a function.

Definition 9.1. Let [a,b] be a closed interval.
(1) The set P = {xg,x1,22,...,x,} of finite points

a = xg,%1,%2,..., T, =b with

A=< T <Xy <---<x,=0b

is called a partition of [a, b|;

(2) For every i = 1,2,...,n, a closed interval I; = [x;_1,x;| is called the subinterval
of [a,b];
(8) For every i =1,2,...,n, the length of I; = [x;_1,x;] is defined by Ax; = x; — x;_1,
(4) pla,b] is denoted by the set of all partitions of [a, b),
(5) The width of the largest sub-interval in a partition is called the norm of the partition.

9.1.1 Step functions

Definition 9.2. A function f : [a,b] — Ris called a step function if it is piecewise

constant, i.e. if there are numbers a = vy < 11 < 13 < ... < xy_1 < Ty = b such that
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fis constant on each half open intervallx; 1, x;] with 1 < i < N. For a step function we
define the integral to be [P f(z)dx = SN, f(wi_1)(z; — xi_1). The collection of numbers

To, X1, Ta,... TN are called a partition for the step function f .

In this definition we have to take into account that a step function f might be defined
using different partitions, and show that the integral does not depend on which partition

is used to compute it.

Lemma 9.1. If f and g are step functions on an interval [a,b] with f(z) < g(x) for all
z € [a,b] , then [0 f(x)dx < [P g(z)dz.

Definition 9.3. Let f : [a,b] — R be a bounded function and P = {a = xo, x1, 22, ..., 2, = b}
be a partition of [a,b]. For every subinterval I; = [x;_1,x;]. We define Riemann sum
S(f,P) =", f(z})Ax;, where Ax; = x; — x;1 and x} € [z;_1,x;].

Remark 9.1. One might produce different Riemann sums depending on which x}’s are
chosen. In the end this will not matter, if the function is Riemann integrable, when the

difference or width of the summands Ax; approaches zero.

Types of Riemann sums

Specific choices of x} give different types of Riemann sums:

1. If xf = x;—1 for all i, the method is the left rule and gives a left Riemann sum.
2. If xf = x; for all i, the method is the right rule and gives Riemann sum.

3. If xf = (x; + x-1)/2 for all i, the method is the midpoint rule and gives a middle

Riemann sum.

4. If f(xF) = sup f([xi—1,24]) (that is, the supremum of f over [x;_1,x;]), the method

is the upper rule and gives an upper Riemann sum or upper Darbouzr sum.

5. If f(xf) = inf f([z;-1, x:]) (that is, the infimum of f over [x;_1,x;]), the method is

the lower rule and gives a lower Riemann sum or lower Darbouz sum.

Definition 9.4. Let f : [a,b] — R be a bounded function and P = {a = xo, x1, 22, ..., 2, = b}
be a partition of [a,b]. For every subinterval I; = [x;_1,x;], put
M; =sup{f(x): 2z € [r;1, 2]}, my=inf{f(x): 2z € [x;_1,x]}

Then, for every P € pla,b], define the upper Riemann sum U(f, P) and the lower

Riemann sum L(f, P) as follows, respectively:

=1

=1
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Example 9.1. Let f : [a,b] — R be a function defined by f(xr) = ¢, where ¢ € R is a

constant. Prove that, for every P = {a = xg, 1,29, ...,2, = b} € pla,b]

U(f,P):L(f,P):C(b—CL)

Solution. Let Ax; = x; — x;_q for every 1 =1,2,...,n. Since M; = m; = ¢, we have

the following:

U(f,P) :iMiAxi:Zchi:ciAmi =c(b—a)
=1

= =1 =1

and

L(f,P)= ZmZAa:i = ZcAazi = cZAxi =c(b—a).
i=1

i=1 i=1

Thus, we have

U(f, P) = L(f, P) = c(b—a)

Example 9.2. Let f:[0,1] — R be a function defined by

1, ifrxreQ
0, ifzxgQ°

fz) =

Then, calculate U(f, P) and L(f, P).

Solution. Let P = {0 =xo,21,22,...,2, =1} € [0,1]. FEach subinterval I; =

[zi_1,2;] for every i = 1,2,...,n has infinitely many rational numbers and irrational

numbers, and so, for everyi=1,2,...,n,

M; =sup{f(x):x € [r;1, 2]} =1

and

m; =inf{f(x): x € [x;_1,2;]} = 0.

Hence, we have L(f,P) =0 and U(f, P) = 1.

Lemma 9.2. Let f : [a,b] — R be a bounded function and P = {a = xg,x1, T2, . ..

be a partition of |a,b]. Then, we have the following:

(1) L(f, P) <U(f, P);

axn:b}
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(2) m(b—a) < L(f,P) < U(f,P) < M(b—a), where m, M € R are numbers such
that
m < f(z) < M for every x € |a, b

Definition 9.5. Let [a,b] be a closed interval.
(1) For every P,Q € pla,b],Q is called the refinement of P if

PcCcQ
(2) The partition R = P UQ is called the common refinement of P and Q.

Lemma 9.3. Let f : [a,b] — R be a bounded function. For every P,Q € pla,b], if Q is

a refinement of P, then we have the following:
(1) L(f,P) < L(f,Q)
(2)U(f.Q) <U(f. P).

Proof. (1) First, let

P={a=xy,21,29,...,2, = b}

and

Q={a=uw0,21,29,...,25_1,2%,25,...,2, = b}

that is, @ = P U {z*}. Then, @ is a refinement of P, that is, P C Q). Next, put

m = inf {f(z) : 7 € [0, 2]} ) = inf {f(z) : 2 € [2°, 2]}

and

. / "
m; = min {mj,mj
Then, we have

n

L<f7 P) = Zmzsz = Z m;Ax; + mijj
=1

i=1,i#j
and
i=1 1=j+1

Thus, since m; < m}, m}, we have
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m;Ax; =m; (2* — xj0) +my (z; — x7)
(2" —xj_1) +mf (x; —27)

and so

1=1,i%#7 1=1,i#7] 1=1,i#j
n n
< Y miEt —xm)+ Y my (- at),
i=1,i#j 1=1,i#j

which implies that L(f, P) < L(f,Q).

Next, let @ be the refinement adjoining a finite points to P, and then, repeating the
proceeding process, we can prove L(f, P) < L(f, Q).

(2) By the same argument as in (1), we can prove U(f, Q) < U(f, P). This completes
the proof. n

Theorem 9.4. Let f : [a,b] — R be a bounded function. For every P,Q € pla,b], (Q
isn’t a refinement of P), we have L(f, P) < U(f,Q).

Proof. Let T = PU Q. Then, T is a refinement of P and . Thus, by Lemma (9.3), we

have

L(f, P) < L(f,T), U(f,T) <U([,Q).

Therefore, since L(f, P) < U(f, P), we have

L(f, P) < U(f,Q).

This completes the proof. n
Corollary 9.1. Let f : [a,b] — R be a bounded function. For every P,Q € pla,b], if
L(f,P) < U(f,Q), then

sup{L(f, P): P € pla, )}, t{U(f, P): P € pla, b}
erist.

Proof. Let Q € pla,b] be fixed. Then, for every P € pla,b], we have

L(f,P) <U(},Q), L(f,Q) <U(f,P),

which means that U(f,Q) and L(f,Q) are upper bound and lower bound of the

following sets:
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{L(f, P): P eplab]}, {U(f,P):Peplabl},

respectively. Therefore, by the Completeness Axiom of R, it follows that

sup{L(f,P): P € p[a,b]}, inf{U(f, P): P € pla,b]}
exist. This completes the proof. O]

Corollary 9.2. Let f,g : [a,b] — R be bounded functions and ¢ € R. For every P €

ola, b], we have the following:
(1) U(f+9g,P)<U(f, P)+Ul(g, P)

(2) L(f +g,P) = L(f,P) + L(g, P);
(8) If ¢ > 0, then we have

Ulef,P)=cU(f,P), L(cf,P)=cL(f,P)
(4) If ¢ < 0, then we have

Ulcf,P)=cL(f,P), L(cf,P)=cU(f,P).

Proof. Let P ={a = xg,x1,22,...,2, = b} € pla,].
(1) We have

U(f+g,P)= Zn:sup {f(x) +g(x) : x € [w;_1, 7]} A,

n

Z sup {f(z) : @ € [zi_1, 7]}

+sup{g(z) : z € [z;_1, 2]} Ax;
=U(f,P)+U(g, P)

(2) As in the proof of (1), we have L(f + g, P) > L(f, P) + L(g, P).
(3) Let ¢ > 0. Then, we have

U(cf, P) Zsup {cf(z) 12z € [xim1, 2]} Ax;

= c;sup {f(x):x € [xi_1,x;]} Axy

=cU(f,P)
(4) Let ¢ < 0. Then, we have
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Ulcf,P) = ésup {cf(x) 12 € [ximy, ]} Ay

_ ciinf{f(x) 2 € [, 3} A

= cL(f, P).

This completes the proof. n

Definition 9.6. Let f : [a,b] — R be a bounded function.
(1) The upper Riemann integral of f on [a,b] is the number

/abf(m)dx = inf{U(f,P): P € pla,b]}

(2) The lower Riemann integral of f on |a,b] is the number

/abf(x)dx = sup{L(f,P) : P € pla,b]}

(3) f is said to be Riemann integrable on [a,b] if

/abf(m)dx:/ff(x)dx

(4) In this case, the Riemann integral of f is defined to be the number

which is denoted by

(5) In addition, we define

/abf(x)dxz —/baf(x)dx, /aaf(m)da::()

(6) f is said to be not Riemann integrable on [a,b] if

[ s@yie # [ )

Remark 9.2. Note that R|a,b] denotes the set of Riemann integrable functions on [a,b].
From the definition of the Riemann integral, it follows that, for every p,Q € pla,b]
with P C Q)
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b

L(f.P) S L(f.Q) < [ fla)da SU(£,Q) SU(S,P)

Example 9.3. Let f : [a,b] — R be the function defined by

1, ifzx
f(x){ foed
0, ifzgQ°

Then, we have L(f, P) =0 and U(f,P) =1 and so

/abf(x)dx = inf{U(f,P): P € pla,b]} =1

and

/abf(x)dx =sup{L(f,P): P € pla,b]} = 0.

Therefore, sine Tff(:v)dx =1#0= Lff(x)dx, f is not Riemann integrable on [0, 1].

Theorem 9.5. (The Riemann Integral Test) Let f : [a,b] — R be a bounded function.

Then, the following are equivalent:

(1) f € Rla,b]
(2) For every € > 0, there exists P € pla,b] such that
U(f>P)_L(f7P) <ée

Proof. (1) = (2) Suppose that f € R[a,b]. Since

/abf(x)dx =inf{U(f, P): P € p[a,b]}

for every e > 0, [° f(x)dx + 5 is not a lower bound of {U(f, P) : P € p[a,b]}, and so
there exists P, € pla, b] such that

b

U< [

a

f(x)dx +§

Also, since

/abf(x)dm =sup{L(f,P): P € pla,b]}

[P f(x)dx — 5 is not an upper bound of {L(f, P) : P € pla,b]}, and so there exists

P, € pla,b] such that

/abf(x)dx—;<L(f,P2)
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Letting P = P, U P,, we have

Thus, we have

U(f,P)— L(f,P) < U (f,P,) — L(f. P.)

< ([ stopae5) = ([ s =3)

= E.

(2) = (1) Suppose that, for every € > 0, there exists P € p[a, b] such that

U(f,P)—L(f,P)<e

Since f?f(x)dx < U(f,P)and L(f, P) < Lff(x)dx, we have

OSL%@Mm—L%@MmSUUJﬂ—LUJU<5

and so

b b b b
|Lﬂ@M—LﬂMMﬂmm:Lfmw—Lf@MKa
Therefore, we have

/:)f(x)dx:/jf(x)dx

and f € R[a,b]. This completes the proof
[

Example 9.4. Let f : [a,b] — R be the function defined by f(x) = x for every x € [a,b].
By using the definition of the Riemann integral, show that

/: f(z)dx = ; (b* — a?)

Solution. For every n > 1, let P, be a partition of [a,b] given by

b— 2(b— b—
Pn:{a,a—i— a,a—i— ( a),...,a—i—n( a):b}.
n n n

Since f(x) = x is increasing on [a,b], at each subinterval [a + (i_l)éb_a),a%— i(b_a)} f

)(b=a)

has the minimum value m; = a + (i’ln and the maximum value M; = a + L;a).

Therefore, we have
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:z”:<a+(i—1)(b—a)) (b—a)

n n

:a(b—a)+(b_a)2 (1—1>.

2 n

Similarly, we have

=1

=3 (o ) (59)
—alb—a)+ (b;“>2 <1+;)

which implies that f(x) = x is Riemann integrable on [a,b] and

/abf(x)dm = ; (b* — a?)

Corollary 9.3. Let f : [a,b] — R be a bounded function. Then, the following are

equivalent:

(1) | € Rla, b];
(2) There ezists a sequence {P,} of partitions of |a, b]

lim (U (f, ) — L (f, P,)) = 0.

n—oo

In this case, we have

b
Jm L(f.P) = [ fla)de = lim U (f.P.).

Example 9.5. Let f : [0,1] — R be the function defined by f(x) = x for every x € [0, 1].
By using the Riemann Integral Test, prove that f(x) = x is Riemann integrable on [0, 1].
Solution. Let P, € 9[0,1] as in Example 3.4 be a partition of [a,b]. Then, we have

n—1 n+1
U(f,P,) = )
2?7/ ) (f? ) 2n

For every € > 0, if we take a positive integer ng such that

L(fapn):

1
— <Ny
£

then we have
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U(f,Pn)— L(f,Py) :i <e.

N

Therefore, by Theorem (the Riemann Integral Test), f is Riemann integrable on [0, 1].

A function f : [a,b] — R is said to be monotone on [a, b] if it is either increasing or

decreasing on [a, b].
Theorem 9.6. Every monotone function f : [a,b] — R is Riemann integrable.

Proof. Assume that f is increasing on [a,b]. Since f(a) < f(z) < f(b) for every z €

la,b], f is clearly bounded on [a,b]. Let € > 0, and select a positive integer n such that

(f(b) = f(a))(b - a)

n

< e

For a partition

P={a=xy<z1 < -+ <xp_y <x, =0},

where Ax; = x; — 2,1 = b_T“ for every ¢ > 1, we have

b—a
n

U(f,P) :zn:MiAxi :if(l’i)

i=1
and

L(f7 P) = Zmz'AIi = Zf (%’—1) .
i=1 i=1

n

Thus, since f is increasing on [a, b], we have

UG P) = DU P) = 0301 () — 1 ()

i=1

=" 50) - f(a)

<e.

Therefore, by the Riemann Integral Test, f is Riemann integrable on [a, b].
Similarly, we can prove this theorem when f is decreasing on [a,b]. This completes

the proof.
]

Theorem 9.7. Let f : [a,b] — R be a continuous function. Then, f € R[a,b], that is,

f is Riemann integrable on [a,b].
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Proof. Since f is a continuous function on [a, b], f is uniformly continuous on [a, b]. Thus,

for every € > 0, there exists 0 > 0 such that

€
|I—y| <(5,I,y€ [aab] = |f<x>_f(y>| < b—a
Now, select a sufficiently large positive integer n, and consider a partition P =
{zo, 1,29, ..., 2,} of [a,b] with
h—
Ary =Axg = - = Ax,, = ¢
n

Further, for each subinterval I; = [z;_1, x;] of the partition P, (1 <i < n), there exist

t;,u; € I; such that

M; =sup{f(z):z € [zi, 2]} = [ (t)

and

Thus, we have

Therefore, by the Riemann Integral Test, f is Riemann integrable on [a,b]. This

completes the proof.
]

9.2 Properties of the Riemann Integral

In this section, we give the Riemann integrals of the composition and the product of
two Riemann integrable functions and some basic properties of the Riemann integral

including some algebraic properties of the Riemann integral.
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Theorem 9.8. Let f : [a,b] — R be Riemann integrable on [a,b] and g : [c,d] — R
be a continuous function on [c,d] with f(]a,b]) C [c,d]. Then, the composition g o f is

Riemann integrable on |a, b.

Proof. Let € > 0. Since g is continuous on [c, d], let

M =sup{f(z) : z € [¢,d]}

and let

’ 3

c :2M—|—(b—a)'

Also, g is uniformly continuous on [c, d], and there exists § > 0 such that 0 < § < &’

and
y.z €led] |y -2l < 0= lg(y) —g(z)| <"
On the other hand, since f is Riemann integrable on [a,b], there exists a partition
P ={a=xg,1,79,...,2, = b} of [a,b] such that
U(f7P) _L<f7p> < 52'

Now, we show that, for this partition P,

Ulgo f,P)—L(go f,P)<e
and then g o f is Riemann integrable on [a,b]. For every i = 1,2,... n, put
M; =sup{f(z): v € [, 1,2},
m; =inf {f(x): 2z € [z;_1,x]},
M =sup{(go f)(z): x € [xi_1, 2]},
m, =1inf{(go f)(z) : x € [x;_1, 2]}

Now, to be convenient, we separate the indices of the partition P into two disjoint

subsets X and Y as follows:

Now, if i € X, that is, M; — m; < 6, then, for every =, 2’ € [x;_1, x;], we have

[f(x) = f ()] <0
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and so

((go f)x) = (go f) (@) <<

which implies that

M —m <e

(2

Thus, we have

S (M} —mj) (z; — xmq) < E'(b—a). (9.1)

i€eX
But, if i € Y, then we have § < M; — m,; and so

1
d (i — i) < 5

€Y

Z (Mz - mi) (xz - xi—l)

€Y
1
<d<¢é
Therefore, we have
=%

If we combine (9.1) and (9.2) then we have

U(gof,P)—L(gof,P)
= (M —my) (2 — xiy) + Y (M] —mj) (2 — 25_1)

ieX =
<é&(b—a)+2Me
=e.

Therefore, by the Riemann Integral Test, g o f is Riemann integrable on [a,b]. This

completes the proof.
O

Theorem 9.9. Let f, g : [a,b] — R be Riemann integrable on |a,bl], that is, f, g € R[a, V],
and let ¢ € R. Then, we have the following:
(1) f+g € Rla,b] and

/ab(f + g)(v)dx = /abf(x)dx + /abg(@M
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(2) cf € Rla,b] and

/abcf(x)dx = c/ab f(z)dz

(8) fg € Rla, b
(4) If f(x) < g(x) for every x € [a,b], then

[ sy < [ gty

(5) If |f| € Rla,b] then < () lda

Proof. (1) Since f, g € R|a, b], for every ¢ > 0, there exist P, P, € p[a,b] such that

U(f,P)—L(f P)< % Ulg, By) — L(g, Py) <

Put P = P, U P,. Then, we have P € gp[a, b] and

DO ™

U(f+g,P)—L(f+g,P)<U(f,P)+ Ulg, P) = L(f, P) — L(g, P)
=U(f,P)—L(f,P)+Ul(g, P) — L(g, P)
<U(f,P)—L(f,P)+Ul(g, ) — L(g, P»)
-

Therefore, by the Riemann Integral Test, we have f + g € R[a, b].
On the other hand, it follows that, for every P € p|a, b,
L(f.P)+ L(9,P) < L(f +g,P)
b
< [ +9)@)da

<U(f+g,P)
<U(f,P)+U(g,P).

(9.3)

Observe that

U(f,P)<U(f,P) < L(f,P)+ = </ o)z + =

and

W%H<U@IM<M%%H—</ m+§

Thus, by (9.3), we have
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[+ 9@xe < U+, )
<U(f,P)+Ul(g,P)

/ dm—l—/ x)dr +¢e

Since ¢ > 0 is arbitrary, we have

/ab(f + g)(v)dz < /ab f(z)dz + /abg(:c)d:c

Similarly, we have

[+ 9@ = L7 +4,P)
> L(f, P)+ (g, P)
> U(f,P) *-I—U(g,P)—%

Which leads to

/Kf+g dx>/ cm+/

Therefore, from (9.4 ) and (9.5), it follows that

/ab(f + g)(v)dx = /abf(x)dx + /abg(x)dx

(2) It is easy to prove (2) by the definition of the Riemann integral.
(3) Let f € R[a,b] and h(z) = 2 for all z € [a,b]. Then, we have

ho f=f*¢€ R[a,b].

Next, let f, g € R[a,b]. Then, by (1) and (2), we have

9, f+9.f—9,(f+9)°%(f—9)* € Rla,b].

Therefore, since

fo==1(f+9?—=(f—9)7

)-b\r—‘

we have fg € R[a, b].
(4) Just consider H(z) = g(x) — f(z) >0

(9.4)
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(5) Since g(x) = |x| is continuous on [a, b], we have |f| = go f € R|a, b].
On the other hand, let ¢ € R (¢ = +1) be such that

/abf(x)dx

Then, since cf(x) < |f(x)| for every x € [a, b], we have

c/abf(x)dx =

[ er@ar < [ Ir)ids

Therefore, by (2), we have

Aﬂﬂ@ifZCXfﬂwdwzéz#@MxSqu@nm;

This completes the proof.

From the theorem above, we know that

R[a,b] = {f : [a,b] - R : a Riemann integrable function on [a, b]}
is a vector space.

Theorem 9.10. Let f : [a,b] — R be a bounded function on [a,b], and let a number c
with a < ¢ < b. Then, the following are equivalent:
(1) f is Riemann integrable on [a,b|;

(2) [ is Riemann integrable on both [a,c| and [c,b]. In this case, we have

LU@M:LU@M+LU@M

Proof. (2) = (1) Suppose that f is Riemann integrable on both [a, ] and [¢,b]. Then,
by the Riemann Integral Test, for every ¢ > 0, there exist P, € pla,c|] and P, € p|c, b|
such that

U(f,Pl)—L(f,P1)<

DO | M

and
U(f7P2)_L(f7P2)<

Do ™

Let P = P, U P,. Then, we have

U(f.P) — L(f,P) = [U (£, P\) + U (. P)] — [L(f. P.) + L (f. P2)

= [U(FP) = LU P+ [U (. B) — LU P < S+ 5 =<
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Since € > 0 is arbitrary, by the Riemann Integral Test, f is Riemann integrable on
la, b].

(1) = (2) Suppose that f is Riemann integrable on [a,b]. Then, by the Riemann
Integral Test, for every € > 0, there exists P; € p[a, b] such that

U(f,P)—L(f,P)<ce

If P = P, U{c}, then P is a refinement of P and so

U(f,P) = L(f,P)SU(f. )= L(f, ) <e (9:6)
Let P, = PN [a,c] and Py = PN [c,b). Then, for P = P, U Ps, we have

U(f,P)=U(f,P)+U(f,Ps), L(f.P)=L(f P)+L(f D)
and so, from (9.6), it follows that
[U(f, P2) = L(f, )]+ [U(f, P3) = L(f, P5)] <e

Thus, we have

U(f,P)—L(f,P) <&, U(f,Ps)—L(f,Ps)<e¢ (9.7)

Since € > 0 is arbitrary, by the Riemann Integral Test, f is Riemann integrable on
both [a, ] and [c, b].

Finally, we prove

/abf(w)dx - /:f(m)da: + /be(w)dx

In fact, from (9.7), it follows that

/abf(x)dx <U(f,P)=U(f, P) +U(f, P3)
< L(f, P)+L(f Ps)+2e (9.8)

< ch(x)d$+/cbf(x)dx+25
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Also, from from (9.7), it follows that

/ dx—i—/ 2)dr <U(f,P) + U (f, P)

<L(f,P)+ L(f, P3)+2¢

(9.9)
= L(f, P)+ 2¢
< / x)dr + 2¢
Since £ > 0 is arbitrary, it follows from (9.8) and (9.9) that
b c b
/ flz)dz = / fl@)dz +/ fl@)dz
This completes the proof.
[

9.3 The Fundamental Theorems of Calculus

In this section, we prove the Fundamental Theorem of Calculus for a correction between

the derivative and the Riemann integral.
Theorem 9.11. Let f : [a,b] — R be Riemann integrable on [a,b], and define a function
F:la,b] = R by

F(z) = /j ft)dt  for every x € [a, b

Then, we have the following:
(1) F is uniformly continuous on |a,bl;

(2) If f is continuous at xo € [a,b], then F is differentiable at o and F' (x¢) = f (x¢)

Proof. (1) Since f is bounded on [a, b], there exists a constant M > 0 such that

|f(t)| < M for every t € [a, b

Further, for every x,y € [a, b], we have

|F(x) = F(y)| =

Therefore, for every e > 0, if § = 7, then

<t>dt' < ['170ldt < My a1

ly— [ < 6,2,y € [a,0] = |F(y) — F(z)| <e¢
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which implies that F is uniformly continuous on [a, b].

(2) Let € > 0. Since f is continuous at x = xg, there exists § > 0 such that

|z — 20| < 6,7 € [a,b] = |f(z) — f(z0)| <¢

Thus, if 0 < |z — x0| < §, then we have

Fwiiifm”<”%>= xf%(ﬁfﬂmﬁ—émfmﬁ)—f@@
< [0 - @oldi <

Therefore, F' is differentiable at zq, and F’ (xo) = f (xo). This completes the proof.
[

Theorem 9.12. (The Fundamental Theorem of Calculus I) Let f : [a,b] — R be a

continuous function on [a,b], and define a function F : [a,b] — R by

F(z) = /x ft)dt  for every x € [a,b).
Then, F is differentiable on [a,b], and F'(x) = f(x).

Proof. Since f is continuous on [a, b], for every € > 0, there exists § > 0 such that

t—a] < 6 = |f() - f(@)] <=

Let h be a number with 0 < h < §. Then, we have

Flz+h) — F(z) = /a”h Floyde — [ peydr = /:+h F(t)dt

a

and so

Therefore, we have

F(z) = lim F(“hz_F(“’) — f(x).

h—0t

Similarly, for —6 < h < 0, we have




Since F\(x) = F'(z) = f(x),F is differentiable on [a,b] and, for all z € [a,b],
F'(z) = f(x). This completes the proof.
[

Theorem 9.13. (The Fundamental Theorem of Calculus II) Let f : [a,b] — R be
Riemann integrable on [a,b] and F' be differentiable on [a,b]. If F'(x) = f(z), then we

have

[ Fadr = [F@) = o) - Fla)

Proof. Let P = {a = xy,21,29,...,2, = b} be a partition of [a,b]. Then, if we apply
Mean Value Theorem to F' at each subinterval I; = [z; 1, ;] for every i = 1,2,...,n,

then it follows that there exists ¢; € [z;_1, x;] such that

Put

M; =sup{f(x):z € [r;_1, 2]}, my=inf{f(z):2 € [z;i_1,x]}.
Then, we have m; < f (t;) < M, for every i = 1,2,...,n and so

=1

Thus, it follows that, for every P € pa, b,

and so, since

sup{L(f,P) : P € pla,b]} < F(b) — F(a) < inf{U(f,P): P € pla,b]}

and f € R[a,b], we have

This completes the proof.
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Example 9.6. Find an example in which if F' is not differentiable on [a,b], then Theorem
(9.13) is not true.
Solution. Define two functions f, F : [0,1] — R by f(z) =1 for every x € [0,1] and

z, ifxzel0,1),
0, ifx=1,

F(z) =

respectively. Then, f is Riemann integrable on [0,1] and [} f(z)dx = 1.
On the other hand, we have F(1) = F'(0) = 0, and, for every x € [0,1), F'(z) = f(z),
but I is not differentiable at x = 1. Thus, the Theorem (9.13) is not true.

Theorem 9.14. (The Generalized Mean Value Theorem for Integral.) Let f : [a,b] — R
be a continuous function on [a,b] and g : [a,b] — R be Riemann integrable on |a,b] with

g(x) >0 for every x € [a,b]. Then, there exists ¢ € [a,b] such that

Proof. Since f : [a,b] — R is continuous on [a, b], let

M =sup{f(z) :z € [a,b]}, m=inf{f(x):z € [a,b]}

Then, it follows that

mg(z) < f(x)g(x) < Mg(z) for every € [a,]

and fg is Riemann integrable on [a, b] and so

m/abg(z)da: < /ab f(x)g(x)dx < M/abg(:r)d:v (9.10)

If [ g(x)dz = 0, then the conclusion follows easily.
If [? g(x)dx # 0, then it follows from (9.10) that

< LI
Ji g9(x)dx

and so, since f is continuous on [a, b], by the Intermediate Value Theorem, there exists

¢ € |a, b] such that

that is,
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This completes the proof.

Example 9.7. Define two functions f,g:[—1,1] — R by
flz) ==z, g(z)=¢" for every x € [—1,1]

Then, apply Theorem (9.14) to the functions f and g on [—1,1].
Solution. Since f and g are continuous on [—1,1], they are Riemann integrable on

[—1,1]. Further, g(x) > 0 for every x € [—1,1] and

/_11 Flelgteyde = Z /1 g(o)de = =1

-1 €

and so

2 [ f@)g(x)ds
-1 [ g

Since f is continuous on [—1,1] and

f-1)=-1< 570 < 1= f()

by the Intermediate Value Theorem, there exists ¢ € [—1,1] such that

e2

SCE

e2 —1

Therefore, we have

f(c) /1 g(z)de = 2_d-1 2 /llf(:c)g(x)dx.

-1 2—1 e e
Corollary 9.4. (The Mean Value Theorem for Integral) Let f : [a,b] — R be a contin-

uous function on [a,b]. Then, there exists ¢ € [a,b] such that

[ sz = (o~ o

Proof. Proof. In Theorem (9.14), if g(x) = 1 for every x € [a, b], then we have

[ $@)de = fe)o - a)
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Example 9.8. By using the Mean Value Theorem for Integral, prove the following in-

equalities:

T2 <In(1+x) <z for every x >0

Solution. Let f(x) = IJ%:E for every x > 0. Then, we have

e 1
——dt =1In(1
/01+t n(l+2)

Thus, by Corollary (9.4), there exists ¢ € [0, x] such that

|
A]+¢ﬁ=f@@—@

Since f is decreasing on [0, x| and

if{f(t) : ¢ € [0.2]} < f() < sup{f(t) : ¢ € [0,2]}

we have

1 In(1
_In(1+2)

T+ . <1 for every x >0

which implies that

T2 <In(1+x) <z for every x >0

9.3.1 The Substitution Theorem and Integration by Parts

In this section, we prove the Substitution Theorem and the Integration by Parts as

techniques of integration, which are based on the Fundamental Theorems of Calculus.

Theorem 9.15. (The Substitution Theorem) Let f : [a,b] — R be a continuous function
on |a,b] and g : [c,d] — [a,b] be differentiable on [c,d]. If g(¢) = a and g(d) = b, then we
have

b d
| f@yda = [ g (1)t

Proof. For every x € [a, b], define a function F': [a,b] — R by

Then, by Theorem (The Fundamental Theorem of Calculus I), F is differentiable on

la,b]. Thus, we have
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(F(g(1))) = F'(g(t)d'(t) = f(g(t))g'(*)-

Therefore, by Theorem (The Fundamental Theorem of Calculus II), we have

This completes the proof.

Example 9.9. Let f : [0,1] — R be a continuous function on [0,1]. FEwvaluate the
following:

1
2
d
/71 xf (m ) x
Solution. Let ¢(x) = x? for every x € [—1,1]. Then, since we have ¢([—1,1]) = [0, 1]

and f is continuous on [0, 1], we have

/_11 f ($2) dr = ;/_11 f(¢($))¢/(x)dx = ;/11 f(t)dt =0

Theorem 9.16. (The Integration by Parts) Let f,g : [a,b] — R be differentiable on

la,b] and f',¢" be Riemann integrable on [a,b]. Then, we have

[ 1@ @z = f0)90) - fl@ygta) = [ gt

Proof. Since f and g are differentiable on [a, b], fg is also differentiable on [a,b] and so,

for every x € [a, bl

(f()g(x))" = ['(z)g(x) + f(2)g'(x).

Since f and g are continuous on [a, b], they are Riemann integrable on [a, b]. Since f’
and ¢’ are Riemann integrable on [a,b], (fg)' = f'g + fg’ is also Riemann integrable on

la, b]. Therefore, by Theorem (The Fundamental Theorem of Calculus I), we have

and so

b b
| F@g@)de + [ fa)g(@)de = FB)g(6) ~ f(@)gla),

which implies that
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This completes the proof.

Example 9.10. FEvaluate the following:

us
3
/ cos® zdx
0

Solution. Now, we have

s us
3 3
/ cos® xdr = / cos” z(cos zdx)
0 0

— /5 (1 — sin®z) (cos zdx).
0

Let v = sinx. Then, we have du = cosxdx. If v =0, thenuw = 0. If v = 7, then
u = 1. Therefore, we have

s 1
/2 cos® xdr = / (1 — u2) du
0 0

1 1
-5
3 0

1 2
:1——:—

3 3
Theorem 9.17 (Luxemburg Monotone Convergence Theorem). Let {f,.(z)} be a de-

creasing sequence of bounded functions on [a,b], with a < b, which converges pointwise to
0 on [a,b]. Then

b
T}l_)fglo/(lfn(m)dx = 0.

Proof. The lower integral of any function is well defined provided the function is bounded.

Therefore for any bounded function f(x), and by definition of the lower integral, for any
e > 0, there exists a step function L(x) < f(z) such that

| (@)~ L@y < 2

Also note the existence of a continuous function ¢(z) < L(z) such that

/a (L(z) — c(z))dx < 5

Putting all this together, we conclude that for any bounded function f(x), and for
any £ > 0, there exists a continuous function ¢(z) < f(x) such that

205



[ () — ety < <

Note that if f(x) > 0, then the construction of ¢(z) will be done to have ¢(z) > 0
as well. Back to our claim. Let ¢ > 0. Then there exists a positive continuous function

c1(x) < fi(z) such that

/b (fi(z) —ci(z)) dx < °

Ja_ 2?
Since min (¢;(z), fo(z)) is bounded and positive, there exists a positive continuous
function co(z) < min (¢;(x), fo(z)) such that

[/ nin (ea(0), () = ata)) do <

b € n €
a 22 23
By the induction argument, a similar construction will lead to the existence of a

decreasing sequence of positive continuous functions {c,(z)} such that ¢,(z) < f,(x) and

b e € 3 €
| (@) =@ de < S+ S+ g <5

Since { f,(z)} converges pointwise to 0 on [a, b] this will force the sequence {c,(z)} to
also converge pointwise to 0 on [a,b]. Dini’s theorem will imply that {c,(z)} converges
uniformly to 0 on [a,b]. So there exists ng > 1 such that for any n > ny we have

cn(x) < 30 4y for any x € [a,b]. Hence

o

2(b—a)

/abfn(x)dx < /ab(fn(:v) —en(x)) dz + /ab en(z)dz < g n (b—a)=¢

whenever n > ng. This finishes the proof of our claim. O]

Theorem 9.18 (Monotone Convergence Theorem). Let {f,(z)} be a decreasing se-
quence of Riemann integrable functions on [a,b] which converges pointwise to a Riemann

integrable function f(x). Then

lim /ab folz)de = /ab f(z)dz

n—oo
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Proof. Since f(z) is Riemann integrable, {f,(z) — f(x)} is a sequence of Riemann inte-
grable functions which decreases to 0 . Obviously they are all bounded functions. The

Luxemburg Monotone Convergence Theorem will imply

lim (fn< ) = [f(x)) dx = 0.

TL‘)OO

But f; (fu(x) = f(2)) dz = [} (fu(z) — f(2)) dz, hence

which implies

tm [ ) = [ flo)da

]

Theorem 9.19 (Arzela Theorem). Let {f,(x)} be a sequence of Riemann integrable
functions on [a,b] which converges pointwise to a Riemann integrable function f(x). As-
sume that there exists M > 0 such that |f,(x)] < M for any x € [a,b] and n > 1.
Then

b b
Jim [ f@)de = [ f(@)de
Proof. Since f(x) is Riemann integrable, {f,(x) — f(z)} is a sequence of Riemann inte-

grable functions which decreases to 0 . Obviously they are all bounded functions. The

Luxemburg Monotone Convergence Theorem will imply

lim (fn( ) — f(x))dz = 0.

’I’L—)OO

But [y (fu(x) = f(2)) dz = [; (fu(z) — f(2)) dz, hence

which implies

tm [ )= [ floyda
L]

Lemma 9.20 (Fatoo). Let {f.(x)} be a sequence of Riemann integrable functions on

la, b] which converges pointwise to a Riemann integrable function f(z). Then

/abf( d:v<hm1nf/ folz

n—oo
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Proof. If liminf, ff fa(z)dx = 00, then the conclusion is obvious.
Assume that liminf, ., [° f,(x)dz < co. Then there exists a subsequence {f,, } of {f.}
such that

b b
nilgloo/a fo,(x)dx = h}gg}lf/a folz)dx

Clearly the subsequence { f,,, } also converges pointwise to f(z). Set hy,(z) = inf,, >p, fo,. ().
Then {h,,(x)} also converges pointwise to f(z) and is increasing. It is easy to see that
this sequence is bounded. The Luxemburg Monotone Convergence Theorem applied to
{f(x) = hy, ()} will easily imply that

lim /ab b, (x)dz = /abf(a:)d:c

n—o0

Since hy,, (z) < fo,(x), we get

/bf(:v)dx < lim /b fo(x)de = lim inf /b fn(z)dx

9.3.2 Hermite Hadamard Inequality

Let f: I — R be a convex function defined on the interval I , for the two real numbers

a,b of I with a < b, the following double inequality :

f (a;b> <bia/bf(x)d$ <M (9.11)

2

Well known in the literature as the Hermite-Hadamard inequality, it gives us an
estimate of the mean value of the convex function.

If the function f is concave, the inequality becomes

208



9.4 The Hermite-Hadamard Inequality Refined and
Simply Proved

Lemma 9.21. Let f be an integrable function over I. We have:

b_a/f / (b + (1 — N)a)dA (9.13)
= [70a+ (1= XA (9.14)

Proof. We use the change of variable x = A\b+(1—\)a to prove (9.13) and z = Aa+(1—A)b
to prove (9.14).

fore=a,a=X+(1—-XNa = A=0

fore=b,b=X+(1—-XNa = A=1

We integrate f with respect to A over [0, 1] we obtain (9.13).

forx=b,b=Xa+(1-ANb= A=0

forz=a,a=Xa+(1-ANb = A=1

We integrate f with respect to A over [0, 1] we obtain (9.14). O

9.4.1 Proof of the inequality of Hermite Hadamard

Thanks to the convexity of f we have for all A € [0,1] :

a+b A+ (1= XNa+Ada+ (1—-N)b
(*57)=1( ; )
f(Ab+(1— Na)+ f(ha+ (1 —A\)b)

2
[f (Ab+ (1= Na) + f(Aa+ (1= A)b)]
[AF (D) + fla) = Af(a) + Af(a) + f(b) = Af(D)]

[f (a) + f(b)]

(a) + f(b)
2

N

1
S5
1
S5
1

<,

2

</

\

So we can write:

a+b FOb+ (1 =XNa)+ f(Aa+ (1 —A)b)
()«

< )+ 10)

5 > (9.15)
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We integrate the inequality (9.15) over [0, 1]:

1

2 2

/1f<a+b)dA</f(Ab+(1—A)a+f(M+(1‘A)b)dA</1f(a)+f(b)fM

0

We get:

2

f<a;b> </f(Ab+(1—A>a)+f(m+(1—A)b)dA<

Using Lemma 9.21:

/f(Ab—l—(l—)\)a—;f(/\a—i—(l _>‘>b)d>\:; /f()\b—i—(1—)\)a)—|—f()\a—|—(1—)\)b)d>\>
_ ; O/f(/\b (1= Na)dA + O/f(Aa . A)b)dA)
= (e o o)
T - a/f(x)dx

Which therefore proves the inequality (9.11).

9.4.2 Conjuncture

If f is a convex function, are there two real numbers [ and L ?, such that the inequality

(1.1) is written:

a+b> 1
<l <
f( 2 b—a

b
/f(x)dx<L< 5

fla) + f(b)

(9.16)

The answer to the conjuncture is affirmative. It can easily be proven by applying the

inequality (9.11) to each of the subintervals [a, f*] and [%2, 0] :

D)
with:

=y ) ()]
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a+b

-] the inequality (9.11) becomes:

On the interval [a,

f(3a+b>< 1 aLTf(x)d$<f<a)+f(“zb)

atb _
4 2

On the interval [%2, b] the inequality (9.11) becomes:

3b+a 1 b (20 4 £ (1)
(™ )<b_a_;b/a;bf@»azgcgz2

by summing, we obtain:

f<3a2—b)+f<362a> B bia/abf@)dxg fla)+ f(b) +2f (42

from where

() A (2] gt [ s 110 (552)

4 4 b—a
b
/ f(x)dx < L.

1

[ <
b—a

Thanks to the convexity of f

f(“+b> :f(;(aer)) (9.17)

2
L)
Al (5]
<1
and,
f(a);f(b):;[f(a) f(0)] (9.18)
S L[+ /() +2f (“2“’)]
2 2
L L0210 (axb)
> L
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From (9.17) and (9.18) we obtain the inequality (9.16)

f(a) + f(b)
2

a—i—b) 1 b
<< <L<
f( 2 l b—a/af(x)dx

This is what needed to be demonstrated.

9.4.3 Estimation

Theorem 9.22. Let f : I — R be a convex function defined on I with a value in R,
for all X € [0,1] and for the two real numbers | and L we have:

fla) + f(b)

5 (9.19)

f(“;b) <IN < bia/bf(:r;)dng()\)g

where

1) = af (PHEZND) gy (AR AN

and

L(A) =5 [f (Ab+ (1= A)a) + Af(a) + (1 = A) f(b)]

DN | —

Proof. We apply the inequality (9.11) on the subinterval [a, \b + (1 — X)a] with A # 0

Ab+(1-N)a

a+ A+ (1—Na 1 fla)+ f(Ab+ (1 — N)a)
f( 2 )<A6+(1—)\)a—a a/ fe)dr < 2
we get
Ab+(1-N)a
F (Ab + (Z — )\)a) <)\(bl_ . / F(2)d <f(a) + f()\b2+ (1—Xa) (9.20)

a

]
We apply the inequality (9.11) again on the subinterval [Ab+ (1 — A)a, b] with A # 1

b

f()\b+(1—)\)a+b><b_( 1 FOb+ (1= Na) + f(b)

<
2 )\b+ (1 N )\)a)/\b—i_(l N f(ﬁ)dl’ X 2
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We get:

(1+Ab+ (1 — Na 1 b FOb+ (1= Na) + f(b)
f( 2 ><(b—a)(1—)\) / J(@)dr < 2

Ab+(1-N)a

(9.21)

Multiply (9.20) by A :

A <>\b+ (2 - /\)a> . ; i . Ab+7—x)af(x)dx <) <f(a) + f(Ab2+ (1-— )\)a)>

a

Multiply (9.21) by (1 —\) :

(1—\f <(1+/\)b42r (1 _A)a><(bia) / Fo)ds
Ab+(1-A)a
<(1-2) (f(Ab+ (1 —2)\)a) +f(b)>

By adding the resulting inequalities:

A (Ab+(2—/\)a) NCEY. <(1+>\)b—|2— (1 —A)a)

;b

<b_aa/f(l‘)dl‘

<5 (F b+ (1= A)a) + Af(a) + (1~ A)D)
We therefore obtain

< g ! 5 / F@)dz < LV (9.22)

Thanks to the convexity of f we have:
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f (a§b>=f (AWH (1 _»““)bZ” _A)a> (9:23)

A <W> +(1=Nf ((1 +A>)b; (1- A)a)
@f<xb+(1;A)a+a) +(1_)\)f<)\b+(1;/\)a+b>
<; (f (Ao + (1= Na) + Af(a) + (1 = N) f(b)
<f(a)—gf(b)

And by (9.22) and (9.23) we obtain the inequality (9.19).

Corollary 9.5. Let f : I — R be a convex function on I, for all A € [0,1] we have the

following inequality

fla) + f(b)
2

xelpa] . b—a Ae[0.1]

a+b 1 7
f( 5 >< sup [(A) < a/f(x)dx< inf L(\) <

9.4.4 Application

Let f be a convex function on I = [a,b] we have for A = cos?0, § € R

2 1 102 1 2 102
(cos2) = (bcos 6+ (2+sm 9)@) cos? & f (( + cos «9)2b+asm 9) Yy
and
1
L(cos?0) = 3 [f (bcos®0 + asin®0) + f(a)cos®d + f(b)sin® 4]

We apply the inequality (9.11) to the subintervals [a, cos® 8b+ (1 — cos? #) a] and [cos? b+

(1 — cos?0) a, b] respectively, we obtain:

bcos? 0+(1—cos? 0)a

bcos’0 + (1 +1—cos?O)a 1
/ ( 2 ><COS2 0(b — a) a/ f(w)dx
<f(a) + f(bcos? 0 + (1 — cos®0)a)
h 2
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F ((1—|—COS2 0)b+ (1 — cos®6)a 1 f(a)de

2 )g(b—a)(l—cosze)

bcos? 0+(1—cos2 0)a
- f(bcos® 0 + (1 — cos?0)a) + f(b)
= 2

Let us multiply the two results respectively by cos?# and (1 — cos? 62).

b cos? 0+(1 —cos? 0)a

bcos? 0 + (1 +sin?6)a 1
f < 5 ) cos? 0 ém a/ f(z)dz
<f(a) + f(b (30522 0 + (sin?6)a) o2 0
(1+cos?0)b+ (1 —cos*0)a . 1 /
f ( 5 ) sin? A< = f(z)dz

bcos? 0+(1—cos? 0)a
- f(bcos?0 + (1 — cos?0)a) + f(b)

< 5 sin’ @

We sum, we get

2 in2 2 in’
(bcos 9+(21+Sln Q)a) Cos29+f<(1+cos 9)s+(sm 9)&) sin? 6

S~

1
—a)

N

—_
O | =

b
/f(x)dx

<< [f (beos®d + asin® 6) + f(a)cos®d + f(b) sin® 6]

From where

I(cos® 0) <
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On the other hand

2 . 2 2 _ 2
s (a;b)zf <C0820bcos 0 + (; cos® 0)a + (1 = cos? 6)(1 + cos 9)b—12— (1 —cos 9)@)

g f(bcosQH—l—(;—cosQG)a)C0820+f<(1+c0820)b—|2—(1 —cos20)a> 1 - cot)
f(bcos 6+ ( 1+sm 0)a )Cos2g+f<<1+C0829)b+a8m29>sm26’

< ; [f (bos0 + asin® 0) + f(a)cos®d + f(b)sin® 0]
; ( f(a)(cosQQ +sin® 6) + f(b)(cos? + sin’ 6)]

From where

f (a—;b) < l(cosZQ) <
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CHAPTER

10

IMPROPER INTEGRALS

In the previous chapters, all of the functions have been bounded and all of integrals
have been computed on closed and bounded intervals. In this section, we relax these
restrictions by defining improper Riemann integrals.

If f:[a,b] — R be a Riemann integrable function on [a, b], that is, f € Ra, b], then

we have
b . . d . . d
[ o=t (g [ srae) = o (i [ steric)
In fact, define a function F': [a,b] — R by

F(z) = /j f(t)dt for every z € [a,b]

Then, F' is continuous on [a, b] and so

= lim F(d) — lim F(c)

d—b~ c—at
= Jim (Jim (@) = F(e)

. . d
- i (i [ ).

Similarly, we have
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/ab f(x)dx = dlim < lim /cd f(a:)dx)

—b— \c—at

But, in general, the converse is not true. If the converse is true, then f is said to
be improper Riemann integrable on [a, b]. This means that if f : [a,b] — R is Riemann
integrable on [a, b], then f is improper Riemann integrable on [a, b], and so the improper

Riemann integral is an extension of the Riemann integral.

Definition 10.1. 1. Let a,b € R = (—o00,+00) with a < b and f : (a,b] — R be a
function. If f € Rle,b] for every ¢ € (a,b), then the improper Riemann integral of
f on[a,b] is defined by

b b
/ flz)de = lim [ f(x)dx
a c—at c
provided the limit exists. Then, we say that fff(x)dx is convergent. Otherwise, we

say that [° f(x)dx is divergent;

2. Leta,b € R = (—o0,+00) witha < b and f : [a,b) — R be a function. If f € Ra, |
for every ¢ € (a,b), then the improper Riemann integral of f on [a,b] is defined by

b c
/ f(z)dz = lim [ f(x)dx
a c—b— a
provided the limit exists. Then, we say that f;f(x)dx s convergent. Otherwise, we

say that [° f(z)dx is divergent;

3. Leta,b € R = (—o0,+00) witha < b and f : (a,b) — R be a function. If f € Rc,d]
for every c,d € (a,b) with ¢ < d, then the improper Riemann integral of f on |a,b]
is defined by

[ e =t (Jim [ r@ae) = i (1 [ sei)

provided the limits exist. Then, we say that f;f@)dx is convergent. Otherwise, we

say that [° f(z)dx is divergent;

4. If ¢ € (a,b) be such that f € Rla,d] and f € Rle,b] for every d € (a,c) and
e € (¢,b), then the improper Riemann integral of f on [a,b] is defined by

/b f(z)dz = dlim_ df(:c)d:c + lim bf(x)dx

e—C e

provided the limits exist, that is, the improper Riemann integrals
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/acf(as)dx,/cb f(z)dz

are convergent.

Example 10.1. Let f : (0,2] — R be a function defined by f(x) = ﬁ for every z € (0,2].
Show that f is an improper Riemann integrable function on [0, 2]
Solution. For every c € (0,2], since f is continuous on (0,2], f is Riemann integrable

on [0,2]. Further, we have

2 1 ) 2 1 )
J g =lim [ —dr= lim (22 - 2Ve) = 2v2

and so f is an improper Riemann integrable function on [0, 2].

Example 10.2. Let f : (0,1] — R be a function defined by f(z) = 1 for every x € (0,1].
Show that f is not an improper Riemann integrable function on [0, 1]
Solution. The function f is continuous and Riemann integrable on (0,1], but f(z) is not

defined at x = 0. For any c € (0, 1], we have

1]

—dr =[Inz]! =Inl—Ilnc=—1Inc
0T
but the limit
11
lim [ —dz = lim (—1Inc¢) =0
c—0tJe T c—0t

does not exist. Therefore, f(x) = % is not an improper Riemann integrable function

on [0, 1].

Definition 10.2. 1. Let f :[a,00) — R be a function. If f € R[a,b] for every a < b,

then the improper Riemann integral of f on [a,c0) is defined by
00 b
/ f(z)dz = lim [ f(x)dx
a b—oo Jg
provided the limit exists. Then, we say that [° f(x)dx is convergent. Otherwise,

we say that [° f(x)dx is divergent;

2. If f € Rla,b] for every a < b, then the improper Riemann integral of f on (—oo,b]
is defined by

/b f(z)dz = lim bf(x)dx

—00 a——00 Jq
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provided the limit exists. Then, we say that ffoo f(x)dx is convergent. Otherwise,
we say that [°_ f(z)dz is divergent;

3. If f: R = R is a function and f € R[a,b] for every a,b € R = (—o0,00) with
a < b, then the improper Riemann integral of f on (—oo,00) is defined by

/_o:of(x)d:c: lim C dx—i—hrn/ f(z

a——0o0 b—oo

for every ¢ € R provided the limits exist, that is, the improper Riemann integrals

[ @y, [ fla)da
are convergent.

Example 10.3. Evaluate the following:

o 1
—=d
1\/_$

Solution. By the definition of the improper Riemann integral, we have

b
/ —dx =lim | —=dzr= blim 2[Vh — 1] = oo
Thus, [7° %dw is divergent.

Example 10.4. Evaluate the following:
2 1
—=d
/,oo d—a2"
Solution. By the definition of the improper Riemann integral, we have

dr = lim ——dx

2 1 2 1
/—oo (4 — I‘)Q a——00 Jq (4 — I)Q

Thus, f -

(4 o sdx is convergent.

Example 10.5. FEvaluate the following:
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o .2
/ re ¥ dx
— 0

Solution. By the definition of the improper Riemann integral, we have

o0 .2 0 .2 0 .2
/ xexdx:/ xe“’dx+/ ze ¥ dx
—00 —00 0

0 2 b 2
= lim ze ¥ dr 4+ lim ze ¥ dx
a——00 Jq b—o0 JO
o 1 ( 1 1 _a2> 1 ( 1 _b2 1)
=dm (gt Him e g
_ ! + L_ 0
2 2 7

Thus, [ re~ " dx is convergent.
) o0

Theorem 10.1. If the improper Riemann integrals

/aoo f(z)dz, /aoo g(x)dx

are convergent, then, for every o, € R, [ (af(x) + Bg(x))dz is convergent.

Proof. Note that the limit

lim b(ocf(x) + Bg(x))dx = Jim </ab af(z)dx + /ab 5g(x)dx)

b—o0 Jg

= «a lim bf(x)dx + S lim bg(x)dw

b—o0 a b—o0 a

exists. Therefore, [°(af(x) + Bg(x))dz is convergent and

| (s @) + Bola)ds = [

a

T S@)dz+ 5 [ g(a)da

This completes the proof. n

Theorem 10.2. Let f : [a,00) — R be a function such that f(x) > 0 for every x € [a, c0)
and f is Riemann integrable on [a,b]. Then, the following are equivalent:

(1) The improper Riemann integral [° f(x)dx is convergent;

(2) The set

{/abf(x)dx : b € (a, oo)}

is bounded and, further,

/aoo f(x)dx = sup {/abf(:v)d:v :b € (a, oo)}
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Proof. (1) = (2) Define a function F' : [a,00) — R by

and suppose that the improper Riemann integral [° f(x)dz is convergent. Since F

is increasing, for every b € [a, o0), we have

Fo) = [ f@yir< [~ f@r

and so

{/abf(x)dw :b € (a, oo)}

is bounded.

(2) = (1) Suppose that

{/abf(x)dz b€ (a, oo)}

is bounded. Let L = sup{F(b) : b € (a,00)}. Then, for every ¢ > 0, there exists a
number b € R such that L — e < F(b). Let « > b. Since f(x) > 0, we have
L—e<Fb)<Flx)<L<L+e¢

Since F' is increasing and bounded from above, we have

blLIEO F(b) =sup{F(b) : b € (a,00)}

and

/aoo f(z)dx = sup {/abf(x)dx b€ (a, oo)}

This completes the proof. O

Theorem 10.3. Let f,g : [a,00) — R be two functions such that, for every x €

la,00),0 < f(x) < g(z) and [° g(x)dx is convergent. Then, [>° f(x)dx is convergent
and

/aoo flz)dz < /aoo g(x)dx

Proof. Let b € [a,00). Then, we have

/ab f(x)dx < /abg($)d$ < /aoog(:v)d:v
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Since [;° g(x)dx is convergent, it follows that [° f(x)dx is convergent and

| t@ye < [ gta)da

This completes the proof. O

Example 10.6. Show that [;° \/Ee*xde s convergent.

Solution. For every x > 1, we have

0< \/56_12 < re

and

oo b 1 1 1
/ re *dr = lim ze ® dr = lim (—eb2 + ) = —
1 2e

b—oo J1 b—o0 2 2e

Therefore, by Theorem 8.5.2, it follows that [7° \/Ee‘x2dx s convergent.

Theorem 10.4. Let f : [a,00) — R be a function such that, for every b € [a,00), f is

Riemann integrable on [a,b] and [°|f(x)|dz is convergent. Then, [° f(x)dz is conver-

gent and

/aoo f(z)dz

Proof. For every x € [a,00), we have

< [T 1)l

—[f(@)] < fz) < |f(2)|

and so

0< flz)+|f(z)] < 2/f(2)]

Thus, for every b € [a,00), f + | f] is Riemann integrable on [a, b]. Since [;°2|f(x)|dx

is convergent, then, [(f(z)+ |f(x)|)dz is convergent. On the other hand, for every
x € |a,00), since we have

f(@) = f(z) + [f ()] = |f (@)l

it follows that [;° f(x)dx is convergent.

Now, let [>°|f(x)|dx = L. Then, since —|f(z)| < f(x) < |f(z)| for every z € [a, o),

we have

o0

—L== [TIf@lde < [ fa)de < [T @)l = L

a
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and so

/a flx)dx| < L= / x)|dx

This completes the proof. n

Definition 10.3. 1. An improper integral f;’ f(x)dx is said to be absolutely convergent
if the improper integral [°|f(z)|dx converges;

2. An improper integral [ f(x)dx is said to be conditionally convergent if [0 f(z)dx
converges, but [”|f(x)|dz diverges.

The following exercise is a theorem called Bertrand Integrals

Exercise 10.1. Discuss the convergence or divergence of the Bertrand Integrals

o0 1
[
2 zo1n’(x)

depending on the parameters o and (3.
Solution
Set = Ha If a > 1, then 1 < u < . Since hmgHOO e lnﬁ(z =0, for any f € R, there

< 1 which implies —— o < =.

exists A > 0 such that for any v > A, we have m

Since the improper integral [7° widx is convergent, the basic comparison test will force

I Wd$ to be convergent. If a < 1, then1 > p > a. Since hmz_m = 00, for

M
zo In® (z)
> 1 which implies

any B € R, there exists A > 0 such that for any x > A, we have —~ ,3( )

m > 1 =z Since the improper integral [T - Ldz is divergent, the basic comparison test

will force [5° dx to be divergent. Fmally, assume o = 1. Then for any A > 2, we

T 1n5 (z)
have

A 1 In(A)
——dzr = / —dx
/z z1n” (x) n(2)

Since flff@) x%dx is convergent if and only if B > 1, [5°
only if B> 1.

xlng( )dx is convergent if and

The following exercise is a theorem called Riemann Integrals

Exercise 10.2. Let o be a real number and set

1 +o0o
/ d—xandJ () = / d—x
1

xOé

We have

224



lim — = lim

Ldx , {—ln(s), ifa=1, _{—i—oo, ifa>1

e—=0t Je ¢ e—0t ﬁ (1 — 604%1) , if « 7& 1 ﬁ, ifa<l1
and
_ A dx _ In(A), ifa=1, +oo, ifa <1
lim — = lim . L . - 1
A—+oo 1 x e—0+ T (F — 1) ,ifa#1 T ifa>1

Therefore

I(a) converges < a < 1,

J(a) converges < o > 1.

The integrals I(c) and J(«) are commonly called Riemann integrals.

Theorem 10.5 (Cauchy Criterion). Let f : [a,00) — R be Riemann integrable on
bounded intervals. Then [° f(x)dx converges if and only if for every e > 0 there exists

A > a such that for any t,ts > A we have

/tz f(x)dx

t1

<é€

Proof. Set F(t) = [! f(x)dz. It is clear that the improper integral [ f(z)dz converges
if and only if lim;_,, F'(t) exists. Assume that the improper integral converges. Then for
any € > 0, there exists A > 0 such that for any ¢ > A we have

<&
2

’F(t) - /;o f(z)da

Hence for any t1,t, > A, we have

<§+§—€
2 2 7

F )= F )] < |F () = [ fads

+ 'F ()~ [ f(a)da

Assume the converse is true, i.e., for every € > 0 there exists A > a such that for any

t1,ty > A we have

<e

:2 f(z)dz

Let us prove that the improper integral [ f(z)dz is convergent. Note that lim; ., F'(t)
exists if and only if for any sequence {t, } which goes to oo, the sequence {F (¢,)} is con-

vergent. In R convergence of sequences is equivalent to the Cauchy behavior. Hence
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lim; o, F'(t) exists if and only if for any sequence {t,} which goes to oo, the sequence
{F (t,)} is Cauchy. Our assumption forces this to be true. Indeed, let {¢,} be a sequence
which goes to 0 . Let ¢ > 0. Then there exists A > 0 such that for any ¢1,t5 > A we have

< e.

F )~ F ) = | )i

Since {t,} goes to oo, there exists ng > 1 such that for any n > ng we have t,, > A.

So for any n,m > ng, we have

" f(z)dz

in

[E(tn) = F (tm)] = <e

which translates into {F (¢,)} being a Cauchy sequence. O

Theorem 10.6 (Abel’s test). Assume that the functions f and g defined on [a,o0)
satisfy the following conditions:

(a) g is monotone and bounded on |a, o),

(b) the improper integral [° f(x)dx is convergent. Then [° f(x)g(x)dx is also con-

vergent.

Proof. Let us use the Cauchy criteria proved in the previous problem to prove our claim.
Let ¢ > 0. Since g(x) is bounded, there exists M > 0 such that |g(z)| < M for all
x € |a,00). Since [ f(x)dx is convergent, there exists A > 0 such that for any ¢;,t, > A
we have

g
< —

[ payia| < =

t1

By the Second Mean Value Theorem for integrals, and for any ¢;,ts > A, there exists ¢

between ¢; and t, such that

to

/t2 f(x)g(w)dz = g(tl)/cf(x)dx+g(t2)/ f(x)de

t1 t1 c

Hence

/: f(@)g(z)dz| < |g (t1)] ‘/:f(a:)d:c /;2 f(a)de

But, | [ f(z)dz| < 35 and |[2* f(z)dz| < 557, which forces the inequality | f/* f(z)g(z)dz| <

357 lg (t1)] + 537 lg (t2)] < € to be true. -

+ 1g (t2)]

Theorem 10.7. (Dirichlet’s test.) Let functions f, and g satisfy the following properties:

1. There exists C € R such that [[ f(z)de < C, Vz> a.

2. The function g is monotone on [a,+00) and g(x) — 0,2 — +o0.

Then the integral [° f(z)g(x)dx converges.
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CHAPTER

11

FTRST ORDER DIFFERENTIAL
EQUATIONS

Introduction

The laws of the universe are written in the language of mathematics. Algebra is sufficient
to solve many static problems, but the most interesting natural phenomena involve change
and are described by equations that relate changing quantities. Because the derivative
dzl—(f) = ¢/(z) of the function y is the rate at which the quantity y(x) is changing with
respect to the independent variable x, it is natural that equations involving derivatives

are frequently used to describe the changing universe.

11.1 Notations and definitions

Definition 11.1. An equation relating an unknown function and one or more of its

derivatives is called a differential equation,

F (y, v,y ,y(")) =0

Definition 11.2. The order of a differential equation is the highest order of the deriva-

tive appearing in the differential equation. The degree of a differential equation is the
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highest power of the highest order derivative in a differential equation. The degree of the

differential equation is always a positive integer.

Definition 11.3. We call solution or integral of a differential equation of order n on a

certain open interval I of R, any function y defined on this interval,

y: I —R
z = y(v)

such that y is n-times differentiable at any point of I and satisfies this differential

equation.

Definition 11.4. A linear differential equation of order m is any equation that can be

expressed in the form

ao(2)y™ () + ar(x)y™ V() + ... + an(2)y(z) = f(2)

where f and a; are specified functions for i = 0,...,n and ag # 0. a; are called the
coefficients of the DFE.

Definition 11.5. If y is a function of a single variable, the equation is called an ordinary
differential equation (ODE).

Examples 11.1. 1. ¢/ Inxz+2%y+cosx = 0 linear differential equation of order 1 and

degree 1.
2. 8y" + vy — 3y = xe®sinx linear differential equation of order 2 and degree 1.
3. (y")? + () = —1 nonlinear differential equation of order 2 and degree 3.

4. y® 4+ 5yy” +y = 3 nonlinear differential equation of order 4, and degreel

11.2 First order differential equations

First order linear differential equations with separable variables

Definition 11.6. We call linear differential equation of order 1 with separable variables,

any equation of the form

where [ and h are functions of class C' on interval I of R.
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Resolution

We can reduce this equation to a linear differential equation of order 1 called with sepa-

rated variables of the form

where g(y) = @,‘v’y € I, such that h(y) # 0, then we integrate the two sides each with

respect to its variable.
Example 11.1.

Solve (integrate) the following differential equations
1.y — 2%y = 22
2.y (2* = 3) + 22y = 0.

3.9 (2% + 1) = 1 — 92

Solution

1.

dy

/ 2 2 2
— —rte < = (1

Yy —zy=x - (1+y)x

separating the variables and assuming that y # —1, we have

d
Y e
I+y
hence by integrating the left side with respect to y and the right side with respect to

r, we obtain

1
ln|1+y\:§x3+c,ceR
= |1+ vy — e3®ite
=y =i e ]

then setting k = +e® we have

y(z) = kei* — 1,k € R

d
y’(x2—3)—2$y:0®£( ?—3) =2ay
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assuming that x # —v/3 and x # /3, we have

d
A 22x dx
Y x%—3

from where

ln|y|:1n]x2—3}~|—c,c€R,

then setting k = £e® we have

y(z) =k (2> = 3) .k eR.

d
Y (2®+1) = 1—y2®£(x2+1) =4/1—1y?
assuming that y # —1 and y # 1, we have

dy dx

1—y2_x2+1

from where

arcsiny = arctanx + k, kK € R

as a result

y(x) = sin(arctanz + k), k € R.
Remark 11.1. To determine the constant k it suffices to give an initial condition, yo =

y (20).

First order homogeneous linear differential equations

Definition 11.7.

A first order homogeneous linear differential equation is of the form

Y (z) +alx)y(r) = 0

where a(x) is a continuous function on an interval I of R.

Solving this DE consists in separating the variables such that

Zi +a(x)y=0< dyy = —a(z)dz
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whence by integrating

In |y| :—/a(x)dx+c,c€R

hence the solution of DE is said to be homogeneous solution and it is given by

Yhom () = ke—fa(x)dx, where k = e°.

Remark 11.2. 71- For a homogeneous equation, the trivial solution y = 0 is a solution.
2- The solution here is not unique, but if we also have a particular solution y, for the
initial condition xy € I, such that y, = y (x¢), then we can calculate the constant k and

in this case, the DE will have a unique solution.

Example 11.2. Solve the homogeneous differential equation 3y + e*y = 0.

d d 1
% =—e"y & Y _ —gexdx,

whence by integrating the two members

3y +ey=0&3

1
1n|y|:—§/e$dx+c,c€R

as a result

so the homogeneous solution is given by

Yhom (T) = ke’%ez, ork = +e°

such that y = 0 is a trivial solution.

First order nonhomogeneous linear differential equations

Definition 11.8. A first order nonhomogenuous or with second member linear differential

equation is of the form

a(z)y'(x) + b(z)y(r) = f(x)

where a,b and f are given functions, continuous on an interval I of R, not identically

null on I.

231



Resolution method
Step 1 First of all we solve the associated homogeneous equation (Eq.Hom)
Eq. Hom: a(z)y'(x) + b(x)y(xz) =0
which is an equation with separable variables

a(x)y +b(x)y=0< v = _al@) & y = —@dx

y o b@) oy b(x)

whence by integrating we have

a(z)
1 = — / —=d eR
n |yl o) T +cc
hence the homogeneous solution of the homogeneous equation is given by

‘yhom (x)’ _ e—f Z((:))dx-‘rc

a(@) gy
S Ypom (T) = ke~ J 5@ , where k = £e° € R.

Step 2 To have the general solution of the differential equation, we distinguish two
cases:
Case 1 If we know a particular solution y, of the inhomogeneous differential equation,

then we give the general solution by the formula

Ygle = Yhom + Yp

Case 2 If we do not know any particular solution of the inhomogeneous differential
equation, then we proceed by the method of the variation of the constant, i.e. replace the
homogeneous solution yg,., in the non-homogeneous differential equation by considering
the constant k as a function of the variable z.

Indeed, let y, be a particular solution of the inhomogeneous differential equation,
and yg. a general solution of the inhomogeneous differential equation, then y4. — 7, is a
solution of the homogeneous equation, indeed,

y, verifies the inhomogeneous differential equation then

a(z)y,(x) + b(x)yp(z) = f()

and yg. also satisfies the inhomogeneous differential equation then

a(2)yge () + 0(2)ygie(x) = f(x)
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and calculating the difference, we have

a(x) (Ygie() = yp(7))" + b(x) (Ygie (¥) — yp(2)) = 0

hence yg4. — v, verifies the homogeneous equation, thus

Ygle — Yp = Yhom < Ygle = Yhom + Yp

Example 11.3. Solve

y' cosz +ysinz =1
Homogeneous equation: We start by writing the homogeneous equation of the nonhomo-
geneous differential equation in the form
Eq. Hom: y cosx + ysinz = 0

It is an equation with separable variables

! sin 1 sin x
s & —dy = — dx
Y cosxr Yy cos
whence by integrating we have
Iyl =—[ 2Ly +c,c € R = Inly| =In|cosz| +c =y = kcosx, where k = +e°.

Cos T

Therefore, the homogeneous solution is given by

Ynom (z) = kcosx, where k € R.

We then notice that this differential equation admits as an obvious particular solution
the function y, = sinx, indeed y' = cosx from where y, verifies the nonhomogeneous

differential equation, so we can use case 1 and we have

Ygie(xr) = kcosx +sinz, k € R

Remark 11.3. If we do not win to find a particular solution of the NDE, we can use the
method of the variation of the constant k in the homogeneous solution ygom(x) = k cosz.

Indeed,
Yhom () = k(x) cosz = y'(x) = K cosx — ksinz
then substituting in the NDE, we get

dx

Kcos?x=1< dk = 5
cos?
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and by integrating we have

k(x) =tanz + ¢, c € R.

Then we replace in the Homogeneous Differential equation, then we get the general

solution
Ygie (r) = (tanz + c¢) cosz

hence yg. (r) = sinx + ccosz, c € R.

Example 11.4. Solve the differential equation

xT

y+y=e

with the particular solution y(0) = 1.

Solution

d d
Eq. Hom: y’+y=0<:>—y:—y<:>—y:—dx
dx Y

then by integrating on both sides we get

Inly|=—x+c,c €R

hence by setting k = e

Ynom (z) = ke™™, where k € R.

We vary the constant k, we then have

() =kKe ™ —ke™

then we substitute in NDE to obtain

=1 dk=dz

whence by integrating we have

k(z)=z4+c,ceR

as a result

Ygie(x) = (x +c)e *,ceR

as y(0) =1 then, c=1 so
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y(x) = (z+1)e™
Example 11.5.

Solve the following differential equation

(1+2%)y - — Y _ arctanz
arctan x
Eq. Hom : (1+42%)y — S =0,
arctan x
d dx
(1+a:2)y’—¢:0(:>—y:
arctan y (14 a?)arctanz
By integrating both sides, we get
Iny| / ! dz+c1,c; €R
nly| = x4+ c,c
Y (14 2?)arctan b
dz
CV :t=arctanzr = dt = ——
1+ 22

from where

dt
ln\y]:/7+clzln|t|+cl,clE]R

SO

In|y| = In|arctanz| 4 ¢1,¢; € R,

so by setting k = e

Ynom () = karctanzx,or k € R.

By the technique of variantion of the constant, we suppose temporally that £, isn’t a

constant, thus

y'(z) = k' arctan x +

1+ 22’
than we replace in the NDE
2 ! k
(1+x) k'arctanx + —— | — k = arctan z.
1+ 22
SO
1 dx
Fl+z22)=1<k = s dk =
( +$) 1+CE’2 1+l‘2

by integration, we get
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k(x) = arctanzx + ¢,c € R,

then

Ygie(z) = arctan® x + carctan z, ¢ € R.

11.3 Bernoulli Differential Equations

Definition 11.9. Differential equations in this form
y'(z) + a(z)y(z) + b(z)y*(z) =0

where o € R*, v # 1 and a, b are two given functions, of class C° on an interval I in R,

are called Bernoulli Equations.

Resolution method

First, we assume that y # 0 because we are looking for a non-trivial solution.
The technique consists in dividing the DE by y®(x), which leads us after an adequate

change of variables to a linear differential equation of order 1. Indeed, we have

(@) ()

by CV : z(z) = y' () = ;a5 We get

y'(z) a(z) +b(z) =0

1
(1-a)

which is a linear differential equation of order 1 that we know how to deal with.

Z(x) + a(x)z(x) + b(z) =0

Example 11.6.

Integrate the following differential equation:

Y+ zy = ay?

It is of Bernoulli’s form with o = 2.
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We assume that y(z) # 0 and we divide by y?

CV:z(x)=y (z) = L, hence 2'(z) = ,

then we substitute in DE to find

—z/—l—xz:x

which is a linear differential equation of order 1.
Note that this equation can be solved by the method of separation of variables or by
the method of variation of the constant.

Separation of variables method

dz

= xd.
-

2 trmz=rsd=2:-1)s

and integrating on each side we have

1'2
ln|z—1|:§+c,ceR,

22

x2
=|z—1=ez"=¢"e7,c€ER,
22
= z—1=ke? with k = %€,

from where

ZQ
Zge(r) =1+ ke?, with k = e € R

and since y(z) = ﬁ, then

1
=0
1+ kez

For more explanations, we will calculate z a second time by the method of the variation

Ygle () ke R.

of the constant
Constant variation method
We first solve the homogeneous equation
dz
—Z+r2=0& — ==
z

from where

237



1
In|z| = §x2—l—cl,cl eR
1 1
& |z = e = ¢ . g3®
_ C1 1332 _ lIQ : _ Cc1
&z = e - e2? = ke2” with k = £e.

SO

1.2
Zhom = kez2® .

We vary the constant k£, we then have
o = ke + kres®
then we substitute in NDE to obtain

1.2 1.2 1.2
—k'e™ — kxe2™ + kxe2™ =z

from where

1.2 1,2
EF = —ze 2% & dk = —xe 27 dx

We integrate both sides and we get

k(x) = e 2 4 K, K € R,

then

Zgie(T) = (e_

ol
8
+
N——
®
NI}
8

or, equivalently

Zgle () =1+ Ke2” K €R.
Example 11.7. Integrate the following differential equation

, 2 e’
Y+ -oy=—
x

VY

Solution It is an equation of Bernoulli form with o = —z. We assume that y(z) # 0

1
5.
and we divide by y_%

2 5
VYVt oyi=e

Njw

(2), hence #(x) = Sy () (),

CV:z(zx)=y 5
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then we replace in the concerned equation, we get

2,+2 -
24+ —z=ce€
3 T

which is a linear differential equation of order 1.

Homogeneous equation

2, 2
-2 +—-2=0
3 x
2! 3 dz 3
S =-"o —=—"dz
z x z x
by integrating we get
In|z| = =3In|z|+ ¢, €R,

o |Z| _ 6—31n|x\+01 _ 6(:16—3ln|a:|

C1

hence the homogeneous solution

k
Zhom (T) = et where k = £e® € R

Variation of the constant

We vary the constant k, then

K (z) Bk(a:)

o 4

Z(x) =

and we substitute in Differential equation, which gives

3 T

zd 3 3

2<k’(fv) B 3k(fv)> L 2k(@) e 2K

3\ 23 zd

& dk = ;’xgexdx = k(x) = ;/x36xdx

then we integrate by parts 3 times

u=x3 du = 3x%dx
IPP1: =
dv = e*dx v=e"

from where
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k(z) = ;)f’ex - Z [ﬁe”& — 2/xezd$]

U=z du = dx
IPP 3 : =
dv = e*dx v=¢"

from where

from where

k(x) = gex [2° = 32* +6(z —1)] + ¢,c€eR

Substituting in the homogeneous solution zg.,, we obtain the general solution

113
Zgie(T) = ] [2655 [° = 32° +6(z — 1)] + c} ,ceR

and since Yge = 25 then the general solution is given by

win

173

Ygle () = <3 [ex [2° = 32 + 6(z — 1)] + c]) ,ceER
x® 12

Example 11.8. Solve

1
y/ o 27y — 5$2y5
T

Solution It is a Bernoulli’s equation with oo = 5. We assume that y(z) # 0 and we divide

by y°

y'(x) 1,
= = —-
then we replace in equation, we get
1 1
_12, — 5= 5x°

which is a linear differential equation of order 1. Homogeneous equation
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1, 1
4 2z
2 2 dz 2
& —=——& — =——dr,
z x z x
by integrating we get
In|z| = =2In|z| + ¢, € R,
o ’Z‘ _ e—21n\x|+c1 _ ec16—21n|x\ _ i
22

whence the homogeneous solution is given by

k
Zhom (T) = et where k = £e“ € R.

Variation of the constant
We vary the constant k. Let z(z) = % then 2/ = f—; — 2% and we substitute in the
equation, which gives

/

1 (K k k k
—= < — 2) — — =hr* & ——— =h1’ & dk = —202*dx
4x2
=k=—-42"4+cceR
and by replacing in the homogeneous solution zg.m, we obtain the general solution of

the equation

Zgie(T) = ;2 [—42° +¢],ceR

and since Yge = 2~7 then the general solution of first differential equation is given by

1
1

Ygle(w) = <$12 [—42” + CD = (—4a2° + C:v*2)_% cER

Example 11.9. Integrate the following differential equation

Y +y—y*(cosx —sinz) =0

Solution
It is a Bernoulli’s equation with o = 2. We assume that y(x) # 0 and we divide by y?
/
1
% + — =cosz —sinx
) Y
CV :z(z) =y Hz) = () hence

— y(z)
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(o) = —yf ey () =~ L V)

then we replace in the equation, so we get:

—2 4+ 2z=rcosx —sinzx

which is a linear differential equation of order 1.

Homogeneous equation

by integrating we get

In|z|=2+c¢,c0 €R

r+c1 cl T

|z| = "7 = e%e

from where the homogeneous solution is given by:

Zhom (%) = ke®, where k = e

We vary the constant k, then 2'(x) = k'(x)e® + k(z)e®, and we replace in the corre-
sponded equation, which gives
—k'e® —ke® +ke® = cosx —sinx & —k'e* = cosz —sinz < dk = e *(sinz — cos x)dx

from where

k(x) = /e’x(sinx —cosz)dr = /e’w sin xdx — /e’x cos xdx

We use integration by parts

u=sinz du = cos zdx
IPP: =
dv = e *dx v=—e*

= /e_“c sinzdr = —e *sinx + /e_w cos zdx

thus

k(x) = —e “sinx + /e’x cos xdx — /e’x cosxdr = —e “sinx +c¢,c € R

and by replacing in the homogeneous solution zg.m, we obtain the general solution, of
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the Linear equation

Zge(x) = " (—e sinz 4 ¢) = ce® —sinz,c € R
and since yg. = 2~ then the general solution of Bernoulli’s equation is given by

_ 1
Ygie(x) = (ce™ —sinz) ' = ———— ¢ € mathbbR
cet —sinx

with ce® —sinx # 0

11.4 Riccati differential equations

Definition 11.10. A Riccati equation is a nonlinear differential equation of order 1 of

the form
Y(2) = a(z)y*(z) + b(x)y(z) + ()
where a,b and ¢ are given functions, continuous on an interval I of R, with a(x) #

0,b(x) #0 and c(x) # 0,Vx € I.

Resolution method

Firstly, we need to find a particular solution of the Riccati equation noted s(x) then make

the following change of variables

y(z) = 2(x) + s(z) = ' (x) = 2 (z) + 5'(2),
then we substitute in the equation, hence

(@) +5'(2) = a(z)(2(2) + 5(2))* + b(x)(2(2) + 5(2)) + (=)
= a(2)2*(z) + b(z)z(z) + a(z)s*(z) + b(z)s(z) + c(z) + 2a(z)z(x)s(z)

and since s(z) is a particular solution of the Riccati equation then it satisfies

s'(z) = a(z)s*(z) + b(z)s(z) + c(z)
& 2 (2) = a(x)2?(x) + b(x)2(x) + 2a(x)z(x)s(v)
= a(z)2*(z) + 2(2)[b(x) + 2a(2)s(2)]
& () — 2(2)(b(z) + 2a(z)s(x)) — a(z)2*(z) = 0

which is a Bernoulli equation, with a = 2.
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Example 11.10. Solve
vy —y 4+ 2r 4+ 1)y —2> -2 =0, forz #0

Solution

It is a Riccati differential equation

1 1
y’:y2—<2+)y+a:—|—2.
T x

We notice that equation admits the function s(x) = x as a particular solution and we

make the following change of variables:

y=z+r=y =2+1

then we replace in Riccati equation , hence

1 1
z’+1:(z+x)2—<2+> (z4+z)+x+2
T xZ

which is equivalent to
/ 1 2 i / 2
2 =24+ -=02r+2—-2"=0
x x
which is a Bernoulli equation with o = 2.

We divide it by 22, hence

Thus
= —at' +t=1

which is a linear equation of order 1 with second member.
Homogeneous equation

, 1 dt dx

—at' tt=0&-—=-& — = —

t =z t T

where by integrating we get

In|t| =1In|z| + c1,c1 €R,

|t‘ _ €1n|x\+cl _ 66161n|z|,
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Therefore

thom () = kx, with k = +e.

Variation of the constant

We vary the constant k then t' = k'x + k, hence

then by integrating we get

and replacing in thom, we get
1 .
tge(z) =\ —+c)z=1+cz, withceR
x

therefore we have

Zgie(T) = | , with c e R

+cx

and finally

ygle(l') = Zgle + T = + x, with c € R.

1+ cx

Example 11.11. Solve

Y 1
Y+ -y =
X T

such that s(x) = L is a particular solution.

The solution is (check it)

%+ 2c

_ ith ¢ inR
z (=22 4+ 2¢)’ wieem

Ygie (T) =
Exercise 11.1. Integrate the following differential equation,
y - 2zy +y* =22’

such that the function s(x) = x + 1 is a particular solution

Sorry, I can not tell you that the solution is

1—x+2ce*(z+1)
Yore %) = 2ce?r — 1

, with ¢ € R.
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CHAPTER

12

LINEAR DIFFERENTTAL EQUATIONS
OF ORDER 2 WITH CONSTANT
COEFFICIENTS

12.1 Linear differential equations of order 2 with con-

stant coeflicients

Definition 12.1. A linear differential equation of order 2 with constant coefficients is
any equation of the form
(E) :ay” + by’ + cy = f(x)

where a,b,c € R,a # 0 and f is a continuous function on an interval I of R.

Definition 12.2. We call the homogeneous equation or equation without the second mem-

ber the equation:
(F):ay" +by +cy=0

Theorem 12.1. The general solution y yle of the nonhomogeneous differential equation
is the sum of a particular solution y, of this nonhomogeneous equation and the solution

Yrom Of the homogeneous equation Yge = Yrom + Yp
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Proof. We verify that ynom =+ ¥, is a solution of equation (E) , in fact

@ (Ynom + ¥p)" + 0 (Ynom + ¥p)" + ¢ (Ynom + )
= (Whom + Dhom + CYhom) + (ay, + by, + cyp)
= f(z)
Conversely, if y, is a particular solution of equation (E) and y is another solution of

equation (F), then their difference is a solution of the homogeneous equation, indeed

aly—yp)" +0(y—y) +cly—y)
= (ay" + by’ + cy) — (ay,y + by, + cyp)
= f(x) — f(x) =0
O

Remark 12.1. e The zero solution y = 0 is a trivial solution of the homogeneous

equation.

o Ify; and yo are two solutions of the homogeneous equation then for all o, 3 in R,

than oy, + Byo is a solution of the homogeneous equation too.

12.2 Method of resolution

Step 1

We first solve the homogeneous equation (without right-hand side):
ay” +by' +cy =0, (6)

We set y = €"*, where r is a constant, hence 3’ = re™ and y” = r?e", then we substitute
in (6) hence
e (ar2 +br + c) =0

which is equivalent to

ar® +br+c=0 (6.1)

Equation (6.1) is called the "characteristic equation" of the differential equation (6), we
solve this equation by first calculating its discriminant A = b? —4ac, where we distinguish
3 cases namely Let A = b? — 4ac be the discriminant of the characteristic equation. The
differential equation (F) : ay” 4+ by’ + cy = 0.

Case 1: If A > 0 then equation (6.1) admits two distinct real solutions 1 = % and
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ry = % and in this case the homogeneous solution of equation (E) is in the form
Ynom () = Ae™® + Be™* A B € R.
Case 2: If A = 0 then equation (6.1) admits a double solution : r = 52 and in this case

the homogeneous solution of equation (E) is in the form
Yhom () = €™ (A + Bz),A,B € R.

Case 3: If A < 0 then equation (6.1) admits two complex conjugate solutions r; = 5+ iw

and ry =  —iw and in this case the homogeneous solution of equation (E) is in the form
Yhom () = €”7(C coswx + Dsinwz),C, D € R.
Justification:

o If A > 0 then we assume that r is a real solution of the characteristic equation
(6.1) and we make the change of variable y(z) = ae"™z(x). We differentiate twice

and substitute in (E), then we get €™ [(2ar + b)z’ + 2”] = 0, which is equivalent to
(2ar +b)z' +az" =0
o If r is a double solution of the characteristic equation then

—b

r=-—<22ar+b=0
2a

and in this case
=0

hence by integrating twice we have

z2(x) = 1z + ¢g, with ¢,¢0 € R
= y(x) = ae’ (a1x + ¢2) = €™ (ac1x + acy)

hence by setting ac; = A and acy = By(z) = e’ (Azxz + B), with A, B € R.

o« If r is a simple solution of the characteristic equation (6.1) then 2ar+ b # 0 and
the other solution would be ' = — (r + 2) because their sum is equal to —g and

in this case

n
i:_(Qar+b) :—27’—9
z a a
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hence by integrating twice we have

b
In|?/|=— (27"+ ) r+cy, withe € R
a

= 2 = ke (+2)% with ky = te
_kl

M ~(r+2)T Ly with ky € R
(27“—}-%)6 + Ko, W1 9

= z(x) =

Thus

—aki _(r42)a
= - a k T
y(x) (2r n g) e + koe
—ak1

then by setting ) = A and ky = B, we have

y(z) = Ae"® 4+ Be'® A, B € R

o If A < 0 then equation (6.1) admits two complex conjugate solutions r; = f + iw
and 7, =  — iw and in this case equation (6) admits two solutions
yp = e — % (coswa + i sinwz)
Yy = eIl — eﬁx(cos wx — isinwx)

what yields to

1

Y, = 5 (y1 + y2) = €’ coswa
1

Y, = % (1 — y2) = e sinwa
i

and since any linear combination is also a solution of the homogeneous equation (6), then

y(x) = CeP? coswr + DeP® sinwx

= e’*(C coswr + Dsinwr)

withC, D e R

12.3 Form of particular solution for second-order D.E.

with constant coefficients

Counsider the second-order linear ODE with constant coefficients:

ay” + a1y + apy = g(z),
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where as, a1, ag are constants, and g(z) is the non-homogeneous term. Recall that the

associated homogeneous equation is:
asy” + a1y’ + agy = 0.

The characteristic equation is:
a27"2 + ar + ag = 0.

Solve for the roots r; and ry. Depending on the nature of the roots:

« Real and distinct roots: y,(z) = C1e™® + Cae™”,
« Repeated real root: y,(x) = Cre"* + Cyze™?,

« Complex conjugate roots: y(z) = ¢**(Cy cos(fz) + Cysin(fz)).

Form of the Particular Solution

The form of the particular solution y,(z) depends on g(z). Use the method of undeter-

mined coefficients to guess y,(z). The common cases are:

Case 1: g(z) = P,,(z) (Polynomial of degree m)

If g(x) = Pp(z) = apx™ + ap12™ ' + - -+ + ag, assume:
yp(x) = Amﬂfm + Am,1$m_1 + -+ Alx + Ao.
If ap = 0, multiply y,(z) by z to avoid overlap with the homogeneous solution.

Case 2: g(r) = ¢"* (Exponential function)

If g(z) = e** assume:
yp(w) = Aet.

If e is already a solution to the homogeneous equation, multiply by 2", where n is the

smallest integer such that z"e** is not a solution of the homogeneous equation.

Case 3: g(z) = sin(kz) or cos(kz)

If g(x) = sin(kx) or cos(kz), assume:

yp(z) = Acos(kx) + Bsin(kzx).
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If sin(kz) or cos(kz) is already a solution to the homogeneous equation, multiply by x.

Case 4: g(x) = P,,(z)e"® (Product of polynomial and exponential)

If g(z) = Pp(z)ek®, assume:
yp(z) = (Amxm 4+ A, ™ A+ Ao)e’“’.

If e#* is already a solution to the homogeneous equation, multiply by 2", where n is the

smallest integer such that z"e* is not a solution of the homogeneous equation.

Case 5: g(z) = P,,(x)sin(kz) or P, (z)cos(kx)

If g(x) = Py (z)sin(kx) or P, () cos(kx), assume:
Yp(2) = (Apa™+Ap_12™ "+ Az+Ag) cos(kz)+ (Bpa™+By12™ ' 4 -+ Bia+By) sin(kx).

If sin(kx) or cos(kx) is already a solution to the homogeneous equation, multiply by .

Step 3: Combine Solutions

The general solution to the ODE is the sum of the complementary solution y,(x) and the

particular solution y,(z):
y(@) = yn(x) + yp(z)-

Examples

o If g(z) = 3e*, assume y,(x) = Ae*. If €** is a solution to the homogeneous

equation, use y,(z) = Aze**.
o If g(x) = 52? 4+ 3z + 1, assume y,(z) = Az* + Bz + C.
o If g(x) = sin(3x), assume y,(z) = Acos(3z) + Bsin(3x).
o If g(x) = xe ™, assume y,(v) = (Az + B)e ™.
o 2y —y =32% + 22 — 1,
e V' +y +y=>5r+1,

N y// - 6y, + 9y — _26350_
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Solutions of some examples
1.
2y —y =32 +22 -1

Homogeneous equation
Qy” . y/ — O

Characteristic equation

w2 —r=0

We have A =1 > 0 or we can simply note directly that

r(2r—1)=0

then equation admits two distinct real solutions: r; = 0 and ry = % hence the homo-

geneous solution

Yhom (.Z') =A+ Be%m, A, BeR

Particular solution y,
To calculate the particular solution of equation we note that the second member f(z)
is a polynomial of degree 2, and that 0 is a solution of the characteristic equation so the

particular solution ¥, of equation will have the following form

yp(z) =z (az® + bz + ¢) = az® + bz® + cx

where a,b, ¢ are real constants to be determined, then we differentiate y, twice and

replace in equation.

Yy, = 3ax® + 2bx + ¢,y = 6ax + 2b
= —3ax® + 2(12a — 2b) +4b — ¢ = 32° + 22 — 1
by performing an identification between the two members of the equation, we obtain

the following system

—3a =3
12a — 2b =2
4b —c= —1

SO
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therefore the particular solution of equation is given by

yp(z) =z (—2° — Tz — 27)

and therefore the general solution is

Ygie(x) = (A + Be%x) —z(x®+75+27),A,BER

y//+y/+y:5x_’_1

We have A = -3 < 0= A = (\/32)2 then equation admits two complex conjugate

solutions r; = —% — @z and ry = —% + ?z from which the homogeneous solution is

Ynom (T) = e 2" [A cos (?w) + Bsin (\ég:c)] , A BeR.

Particular solution y,

To calculate the particular solution of equation, we note the form of the second mem-
ber, we have f(x) = 5z + 1, a polynomial of degree 1 and we note that » = 0 is not a
solution of the characteristic equation then the particular solution will have the following

form

yp(z) =ax+0b
where a and b are real constants to be determined, then we differentiate twice y, and
we replace in equation,
Yp =0y, =0
=ar+(a+b) =br+1

a=25

then by identification we obtain the system
a+b=1

{2,

SO
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therefore the particular solution of the equation is

yp(x) = 5z — 4

and hence the general solution is

Ygle (7) = e 2" !A cos (?w) + Bsin (égfr)] +5x—4, A BeR.

y// . 6y/ 4 9y — _263:U

Homogeneous equation

y' =6y +9y=0

Characteristic equation

2 —6r+9=0

We have A = 0 or it suffices to note directly that

(r—3*=0

then equation admits a real double solution rqy = 3, from which the homogeneous

solution is

Yhom (1) = Ae*™ 4+ Bxe®® = **(A+ Bx), A,BcR

Particular solution y, To calculate the particular solution of the equation, we note the

form of the second member f(z) = —2¢**

, and as r = 3 is a double solution, therefore
of multiplicity 2, of the characteristic the equation, then the particular solution will have
the following form

p(2) = ae™

where « is a real constant (or polynomial of degree 0) that must be determined. We

derive y, twice and replace in the equation,

y, = ae® (3% 4 22) ,y) = ae™ (92° + 12z + 2)

3.53) = 20e®” = —2¢*
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then by identification we have

a=—1

therefore the particular solution of the equation is

and therefore the general solution is

Yge(z) = (A + Bx) — 2%¢*, A, B€ER
Exercise 12.1. Solve the following differential equations
1. " + 2y + by = sin(2x).
2. y" =5y + 6y = e*(xsinz + cosx).
Solution

1.

y" + 2y + by = sin(2x)

Homogeneous equation

y'+2y +5y =0

Characteristic equation

P +2r+5=0

We have A = —16 < 0 = A = (41)? then the equation admits two complex conjugate

solutions

rm=—1—2iandr, =—-1+4+2;

hence the homogeneous solution is

Ynom (T) = e “[Acos(2x) + Bsin(2z)], A,BeR.

Particular solution y, To calculate the particular solution of the equqtion, we note

the second member f(z) = sin(2z), and that r» = 2i is not a solution of the characteristic

equation then the particular solution takes the following form:
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Yp(z) = acos(2z) + bsin(2x)
where a and b are real constants to be determined. We derive twice y,

y, = 2(bcos(2z) — asin(2x)),y, = —4(acos(2x) + bsin(2z))

and the equation becomes

(@ + 4b) cos(2z) + (—4a + b) sin(2x) = sin(2x)
< (a+4b) cos(2z) + (—4da+b—1)sin(2z) =0

thus, we deduce

a+4b=20
—4a+b—-1=0

_ _ 4
{a— 17
— 1
b=t

therefore the particular solution of the equation is

SO

yp(z) = 117(sin(2x) — 4 cos(2x))

and therefore the general solution is
Ygie(x) = e “[Acos(2z) + Bsin(2z)] + 1= (sin(2z) — 4 cos(2x)), A,Be€R.
2.

y" — 5y’ + 6y = €”(xsinx + cosx)

Homogeneous equation

y" =5y +6y=0

Characteristic equation

r? —5r+6=0

We have A = 1 > 0 then the equation admits two distinct real solutions r; = 2 and

ro = 3 hence the homogeneous solution
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Yhom (7) = Ae** + Be’*, A, B€R

Particular solution y,
To calculate the particular solution of the equation, we have the form of the second
member, f(z) = e*(xsinx + cosz), and we note that r = 1 + 7 is not a solution of the

characteristic equation, so the particular solution will have the following form
yp(x) = e*[(ax + b) sinx + (cx + d) cos z]

where a, b, c and d are real constants to be determined, then we calculate the derivative

of y, twice

y, = €e*[sinz((a — c)r +a+b—d) +cosz((a+c)r+b+c+d),
/"

y, = e”[sinz(—2cx + 2a + —2¢ — 2d) + cos x(2azx + 2a + 2b + 2¢)]

and we replace in the equation, hence

[z(a +3c) —3a+b—2c+ 3d]sinz + [x(—3a + ¢) + 2a — 3b — 3c + d] cosx

=zxsinx + coszx

and we obtain the following system

a+3c=1
—3a+c=0
—3a+b—2c+3d=0
20 —3b—3c+d=1

and after solving the system we find

_ 1 — _ 21
a=15 b=-5
c=2 d=14

107 2
therefore the particular solution of the equation is
1=l B (o B
frnd JE— _ mn - -
yp(z) =€ 0% ~ 7/ Sin® g% T 55 ) cosT

and so the general solution is

1
Ygie(7) = A + Be® + Eem.

Note: In general, one can look for the particular solution using the method of variation
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of constants, especially if the coefficients of the differential equation are not constant or
if the second member f(z) is different from the forms given above.

Indeed, by writing the homogeneous solution

Ynhom = Ay1 + Bys

where y; and ¥y, are two linearly independent solutions of the homogeneous equation,

we seek a general solution of the nonhomogeneous equqtion in the form

Ygte = Ay1 + By

considering A and B as two functions that satisfy

Ay + By, =0

then by differentiating y, twice and replacing it in 3.46, we obtain

a(A'y; + B'yy) = f(x)

which gives us the system

Ay + By =0
Ayl + B'yy = 1 f(x)

which we solve to have A’ and B’ then by integration A and B and finally the general

solution ye.

Examples 12.1. 1. Solve the following differential equation using the method of vari-

ation of constants.

1 1
vty =
S1m- T
Homogeneous equation
y'+y=0

Characteristic equation

rP+1=0s (r+i)(r—1i) =0

258



then the equation admits two complex solutions vy = © and ro = —i hence the

homogeneous solution

Ynom () = Acosx + Bsinz, A,BeR.

Variation of constants. We note that y; = cosx and yo, = sinx are two linearly
independent solutions of the homogeneous equation, so we seek a general solution

of nonhomogeneous equation in the form

y= Acosx + Bsinzx

such that A and B are two functions that verify the system

1
sin?

{ A'cosx + B'sinx = 0,

—A'sine + B'cosx =

Multiplying the 1st equation by sinx and the 2nd by cosx, then adding up, we have
cos T cos T

—— & dB = —
sim- xr sim- x

B = dx

we integrate on both sides, making the change of variables t = sinx = dt = cos zdx

then we get

B =—— 53—+, € R
2sin” x
then replacing in the system, we have
1 1
A=————edd=———dz
sin® x sin® x
and after integration we obtain
Cos T
A=cotz+c=— 4+ co,c0 €ER
sin
therefore,
cos? _
Ygle = — + cycosx — — + cysinx
sinx sinx
2cos’z — 1 _ cos 2z _
= ——+c1sinx +cycosx = — +cysinx + cycosx
2sinx 2sin
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with c¢i1,c0 € R

2. Solving the equation

y// ly/ =
i
Homogeneous equation
1 1
y// 7y/ — 0= yf/ _ -
T Y x

which gives

Inly'|=In|z|+ ¢, €R

hence

Yy = cox, with ¢y = e € R
we integrate to find

Yhom = Az + B, avec A,B € R etA:CQﬁ.

Variation of constants

This is the second method to provide solution of the general equation. Let be
y =2% and yo = 1

such that y; and y, are two linearly independent solutions of the homogeneous equa-

tion and we seek a general solution of the general equation in the form

yp = Ay1 + By

such that A and B are two functions that satisfy

Ay1 + By, =0
Ay + By, =

the resolution of this system gives
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which gives after integration

T 3
A:*—f-k’l,B:—E—f—kQ, with k?l,k?QER

2
From where
3
x y T
Ygle = <§+k1>$ —E+k2
23
= ko + k?1.172 + g with ]Cl, ks € R.
Note To determine the constants k1 and ko, it is sufficient to give two initial conditions,
y1 =y (o) and yo =y’ (20).

Superposition principle

Theorem 12.2. Given the linear differential equation of order 2

ay” + by’ +cy = fi(z) + fo(x)

where a,b,c € R and fi, fo are two continuous functions on an interval I of R. The
particular solution y, of (3.63) can be expressed by the sum of the two particular solutions

Yp, and yp, of the respective differential equations:

ay" + by’ + cy = fi(x)

and

ay” + by +cy = fo(z)

such that

Yp = Yp1 T Yps

Proof. We can easily verify that y,, +y,, is a solution of the nonhomogeneous differential

equation, indeed because of the linearity of the equation, we have

a (Yp, 4 Ups)" + 0 oy + Upy) + ¢ Wy + Upy) = (ayy, +byy, + cyp,) + (ayy, + by, + Clp,)
= fi(z) + f2(2).
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Note For the general solution yg. of the nonhomogeneous differential equation, it is
sufficient to write the homogeneous equation and then solve it to obtain the homogeneous

solution ynom and we obtain

Ygle = Yhom + Ypy + Ypo-

Example 12.1. Solve the following differential equations
1. y" =3y = (z+2)e** + (3sinz + 2cos x).

2.y +2y +2y=2x —sinx. 8. y' —4y +3y=3x+ 2+ 4e* + 5e ",

Solution

1. One has

y' — 3y = (v +2)e* + 3sinz + 2cosx

Homogeneous equation:
yl/ _ 3yl — O

Characteristic equation:

r2—=3r=0

We have A = 9 > 0 then the equation admits two distinct real solutions ;1 = 0 and

r9 = 3 hence the homogeneous solution

Yhom (33) =A + Be3x’ A, BeR

Particular solution y,
To calculate the particular solution y, of nonhomogeneous equation, we note the
second member f(z) = fi(z) + fo(z), or fi(z) = (x +2)e** and fo(x) = 3sinz + 2cosz,

then we will use the superposition principle such that

Yp = Yp1 T Yps-

where y,,, and y,, are the particular solutions of the respective differential equations

y' — 3y = (x4 2)e*
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and

y" — 3y = 3sinz +2cosw

Calculation of y,,. We have

y// _3y/ — ({E+2)62I

We note that r = 2 is not not a solution to the characteristic equation then the

particular solution to the equation, will have the following form

Y () = ¥ (az +b)

where a, b are real constants to be determined. We derive twice y,,

e*[2azx + a + 2b],

/
Yp:

yo = e**[dax + 4a + 4b),

and we replace in the equation, hence

e*[—2ax + (a — 2b)] = **(z + 2)
& e*[z(—2a—1) + (a—2b—2)] =0

then we obtain the system next

which gives

therefore the particular solution of the nonhomogeneous equation is

1 X
() = =120+ 5)

Calculation of y,,. We have

y" — 3y’ = 3sinxz + 2cosw

We note that r = i is not a solution to the characteristic equation, so the particular

solution to the equation will have the following form
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Yp, () = accosx + Bsinz
where a, 3 are real constants to be determined. We derive twice y,,
y,, = —asinz + fcosz,

Yy, = —cosx — Fsin,

and we replace in the equation, from which

(Baw — f)sinz + (—a — 3f) cosz = 3sinx + 2cosx

then by identification we obtain the following system

3a— (=3
—a—30=2

and after solving the system we find:

7
_ 9
B=—1

therefore the particular solution of the equation is

9 .
Ypy () = 10 €08 % ~ 7p Sin®

Hence the particular solution of the equation is

1
yp(z) = —1629:(21' +5)+ <170 cosT — ﬁ)sinx)

and hence the general solution of the equation is

1 7 9
Ygie(7) = A+ Be** — Ze2w(2x +5) + <10 cos T — Esin x) , A BeR

2. One has
y"'+2y + 2y =2z —sinx
Homogeneous equation

y//+2y/+2y:0

Characteristic equation
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P +2r+2=0

We have A = —4 < 0 then the equation admits two complex solutions

rm=—-1l—dandro=—-1+1

hence the homogeneous solution is

Yhom () =€ “(Acosz + Bsinz), A/BeR

Particular solution y,
To calculate the particular solution y, of the equation, we note the right-hand side
f(z) = fi(z)+ fa(x), or fi(z) = 2z and fo(x) = — sin z, then we can use the superposition

principle

Yp = Ypy t Yp,

where y,, and y,, are the particular solutions of the respective differential equations

y' + 2y + 2y =2z

and

y' 4+ 2y +2y = —sinx

Calculation of y,,. We have

v+ 2y + 2y =2

We note that » = 0 is not a solution to the characteristic the equation, so the particular

solution to the equation will have the following form

Ypi (1) = az +b
where a, b are real constants to be determined. We derive twice y,,
/
ypl =a

/!
Ypy = 0

and we substitute in the equation. From where
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ar+a+b==x

then we obtain the following system

a=1
at+b=0
hence

a=1and b= —1

therefore the particular solution of the equation is

ypl(x) =x—1

Calculation of y,,. We have

y' +2y +2y=—sinx
We note that » = ¢ is not a solution to the characteristic the equation so the particular
solution to equation equation will have the following form.
Yp,(¥) = avcosx + fsinz
where a, # are real constants to be determined. We derive twice y,,
y,, = —asinz + fcosz,

Yy, = —cosx — Fsinw,

and we replace in the equation, from which

(a+2B)cosz + (—2a+ f)sinx = —sinz

then by identification we obtain the following system

a+28=0
—2a+f=-1
hence
2 1
a:gandﬁz—g

Thus the particular solution of the equation is
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()_2 1.
Ypo (T —5cosx 5smx

Hence the particular solution of the equation is
2 1 .
yp(z) = (x — 1)+ 5 COST — Zsinz

and therefore the general solution of the equation is written

2 1
Ygie(x) = e “(Acosx + Bsinz) + (x — 1) + (5 cosx — 5sina:) ,A, B € R.

3. Let be
1 / T —T
y' — 4y 4+ 3y = (3x + 2) + 4e” + be

Homogeneous equation

y' =4y’ +3y=0

Characteristic equation

r*—4r+3=0

We have A = 4 > 0 then the equation admits two distinct real solutions r; = 1 and

ro = 3 hence the homogeneous solution

Ynom (z) = Ae” + Be*, A, BeR

Particular solution y,

To calculate the particular solution y, of the equation, we note the right-hand side,

f(z) = fi(x) + falz) + f3(x), or fi(x) = 3z + 2, fo(x) = 4e” and f3(x) = He~* then we

will use the superposition principle, such that

Yp = Yp1 T Ypo T Ups

where y,,, yp, and y,, are the particular solutions of the respective differential equa-

tions

y"' — 4y + 3y =3z + 2,
y' =4y’ + 3y = 4de”,

and
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y"' — 4y’ + 3y =5e

Calculation of y,,. We have

y"' — 4y + 3y =3z +2
We note that » = 0 is not a solution to the characteristic equation so the particular

solution to the equation will have the following form.

Ypi (¥) = az +

where a, b are real constants to be determined. We derive twice y,,

Yp, = @
Yp, =0

and we replace in the equation, to find

3axr —4a+3b =3z + 2

and the identification leads to the following system

3a =3
—4a +3b =2
hence

a=1and b=2

therefore the particular solution of the equation is written

Yp, () = 2+ 2.

Calculation of y,,. We have

y//_4y/+3y:4ez

We note that r = 1 is a solution of the characteristic equation. So the particular

solution of the equation is written as

Ups () = ae”
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where « is a real constant to be determined. We derive twice yp,

Yp, = (1 +z)e",

and we replace in the equation, hence

a= -2

therefore the particular solution of the equation is written as

Ups () = —2ze”

Calculation of y,, . We have

y" — 4y + 3y = e ”.
We note that » = —1 is not a solution of the characteristic equation so the particular
solution of the equation will have the form

Ups (1) = ™

where « is a real constant to be determined. We derive twice y,,

r —x
yp3 = —ae -,

?/;/3 - aex’

and we replace in the equation, from which
5t

a= -

8

therefore the particular solution of the equation takes the form

5

Yps (l‘) = éei

From which the particular solution of the equation

xT

5
yp(x) = (v 4 2) — 2we” + ge’x

and thus the general solution of nonhomogeneous equation is

)
Ygie(2) = Ae” + Be* + (z+2) — 2ze” + ge‘x, A, BeR
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